One neuron has huge impact on brain behaviour

November 15, 2012

(Medical Xpress)—Researchers from Australia and the USA have made a unique discovery about how the brain computes sensory information.

The study by scientists at the Queensland Brain Institute (QBI) at The University of Queensland (UQ) and the Howard Hughes Medical Institute in the USA was conducted to better understand how circuits of underlie behaviour.

Using advanced in animal models, the research team was able to pinpoint a single neuron in the neocortex that signaled sensory behavior.

This led to the discovery that active processes in its thin dendritic appendages are responsible for implementing the integration of sensory and motor signals.

"We have long known that active provide neurons with powerful processing capabilities," says QBI's Associate Professor Stephen Williams, who collaborated on the study.

"However, little has been known about the role of neuronal dendrites in behaviourally related circuit computations.

"We were pleasantly surprised to discover that the dendrites of nerve cells operate during behaviour to implement the integration of sensory and motor signals," he said.

Such multi-modal integration enables the brain to perform at lightning speed, allowing animals to react to their environment in relation to existing knowledge.

The paper, titled 'Nonlinear dendritic integration of sensory and motor input during an active sensing task' was published in the prestigious journal, Nature.

In the paper researchers demonstrate how a novel global dendritic nonlinearity is involved in the integration of both sensory and motor during an active sensing behaviour.

"At the cellular level, such integration combines motor signals, which control , with detected from the environment," Associate Professor Williams said.

This process allows an animal to predict where a sensory signal occurred with relation to its movement.

"For example, in a mouse one of the major sensory modalities is touch by the whiskers," Associate Professor Williams said.

"Whisker movement is triggered by the motor cortex, which sends projection to the distal dendrites of the output neurons in the sensory area of the .

"When a sensory signal is detected and correlated with motor cortex activity a large output response is generated in the dendrites, which represents the detection of an object in head-centred coordinates," he said.

Explore further: Persistent sensory experience is good for aging brain

Related Stories

Persistent sensory experience is good for aging brain

May 24, 2012

Despite a long-held scientific belief that much of the wiring of the brain is fixed by the time of adolescence, a new study shows that changes in sensory experience can cause massive rewiring of the brain, even as one ages. ...

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Nov 15, 2012
You've got some fast cellular stopwatches/timing to track all of this integration and coordination.

Is there a minute and hour hand to the cell's 'watches' involved?
Or how many hands to a watch does a cell need?

Is a nonlinear system random?
The question is rhetorical.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.