One neuron has huge impact on brain behaviour

November 15, 2012

(Medical Xpress)—Researchers from Australia and the USA have made a unique discovery about how the brain computes sensory information.

The study by scientists at the Queensland Brain Institute (QBI) at The University of Queensland (UQ) and the Howard Hughes Medical Institute in the USA was conducted to better understand how circuits of underlie behaviour.

Using advanced in animal models, the research team was able to pinpoint a single neuron in the neocortex that signaled sensory behavior.

This led to the discovery that active processes in its thin dendritic appendages are responsible for implementing the integration of sensory and motor signals.

"We have long known that active provide neurons with powerful processing capabilities," says QBI's Associate Professor Stephen Williams, who collaborated on the study.

"However, little has been known about the role of neuronal dendrites in behaviourally related circuit computations.

"We were pleasantly surprised to discover that the dendrites of nerve cells operate during behaviour to implement the integration of sensory and motor signals," he said.

Such multi-modal integration enables the brain to perform at lightning speed, allowing animals to react to their environment in relation to existing knowledge.

The paper, titled 'Nonlinear dendritic integration of sensory and motor input during an active sensing task' was published in the prestigious journal, Nature.

In the paper researchers demonstrate how a novel global dendritic nonlinearity is involved in the integration of both sensory and motor during an active sensing behaviour.

"At the cellular level, such integration combines motor signals, which control , with detected from the environment," Associate Professor Williams said.

This process allows an animal to predict where a sensory signal occurred with relation to its movement.

"For example, in a mouse one of the major sensory modalities is touch by the whiskers," Associate Professor Williams said.

"Whisker movement is triggered by the motor cortex, which sends projection to the distal dendrites of the output neurons in the sensory area of the .

"When a sensory signal is detected and correlated with motor cortex activity a large output response is generated in the dendrites, which represents the detection of an object in head-centred coordinates," he said.

Explore further: Persistent sensory experience is good for aging brain

Related Stories

Persistent sensory experience is good for aging brain

May 24, 2012

Despite a long-held scientific belief that much of the wiring of the brain is fixed by the time of adolescence, a new study shows that changes in sensory experience can cause massive rewiring of the brain, even as one ages. ...

Recommended for you

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Nov 15, 2012
You've got some fast cellular stopwatches/timing to track all of this integration and coordination.

Is there a minute and hour hand to the cell's 'watches' involved?
Or how many hands to a watch does a cell need?

Is a nonlinear system random?
The question is rhetorical.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.