Hand use improved after spinal cord injury with noninvasive stimulation

November 29, 2012
After non-invasive stimulation, people with spinal cord injuries showed greater manual dexterity when asked to grasp and manipulate small pegs with their index fingers and thumbs. Credit: Bunday et al., Current Biology

By using noninvasive stimulation, researchers were able to temporarily improve the ability of people with spinal cord injuries to use their hands. The findings, reported on November 29th in Current Biology, a Cell Press publication, hold promise in treating thousands of people in the United States alone who are partially paralyzed due to spinal cord injury.

"This approach builds on earlier work and highlights the importance of the corticospinal tract—which conducts impulses from the brain's to the spinal cord and is a major pathway contributing to —as an important target for intervention after spinal cord injury," said Monica Perez of the University of Pittsburgh.

The researchers tested the new method in 19 people with chronic cervical spinal cord injury and 14 uninjured people. The treatment was customized to each individual and paired transcranial delivered to a specific part of the motor cortex with electrical stimulation to found in the wrist.

After non-invasive stimulation, people with spinal cord injuries showed greater manual dexterity when asked to grasp and manipulate small pegs with their index fingers and thumbs. Credit: Bunday et al., Current Biology

One hundred paired pulses were delivered every 10 seconds for a period of around 20 minutes to produce volleys of neural activity. The timing of arrival of those volleys in the spinal cord was absolutely essential to the treatment's success, the report shows.

"This short, noninvasive stimulation protocol has the potential to be used within a clinic setting as part of a rehabilitation technique," said study coauthor Karen Bunday, also of the University of Pittsburgh. "When pulses from the motor cortex were precisely timed to arrive at the spinal cord one or two milliseconds before pulses from the peripheral nerve, we observed an increase in spinal cord transmission and voluntary motor output for up to 80 minutes."

After the noninvasive treatment, the majority of the participants in the study could exert more force with their hand muscles. Those effects translated into greater when participants were asked to grasp and manipulate small pegs with their index fingers and thumbs.

More prolonged use of the technique or its combination with other rehabilitation strategies may well improve its therapeutic benefits, the researchers say. The protocol might also be used in the treatment of other kinds of motor disorders involving damage to the corticospinal tract.

"Human electrophysiology can be a powerful tool for developing therapies," Perez concluded. "We need to explore new targets to improve rehabilitation strategies by taking advantage of our knowledge in human physiology and their mechanisms."

Explore further: New spinal cord injury therapy developed

Related Stories

Spinal cord treatment offers hope

November 18, 2011

Queensland University of Technology (QUT) researchers have developed a promising new treatment for spinal cord injury in animals, which could eventually prevent paralysis in thousands of people worldwide every year.

Recommended for you

Amputees' brains remember missing hands even years later

August 30, 2016

Our brains have a detailed picture of our hands and fingers, and that persists even decades after an amputation, Oxford University researchers have found. The finding could have implications for the control of next generation ...

Brain's internal compass also navigates during imagination

August 30, 2016

When you try to find your way in a new place, your brain creates a spatial map that represents that environment. Neuroscientists from Radboud University's Donders Institute now show that the brain's 'navigation system' is ...

Special nerve cells cause goose bumps and nipple erection

August 29, 2016

The sympathetic nerve system has long been thought to respond the same regardless of the physical or emotional stimulus triggering it. However, in a new study from Karolinska Institutet published in the Nature Neuroscience, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.