24 new genes for short-sightedness identified

An international team of scientists led by King's College London has discovered 24 new genes that cause refractive errors and myopia (short-sightedness).

Myopia is a major cause of blindness and worldwide, and currently there is no cure. These findings, published today in the journal Nature Genetics, reveal of the trait, which could lead to finding better treatments or ways of preventing the condition in the future.

Thirty per cent of Western populations and up to 80 per cent of Asian people suffer from myopia. During visual development in childhood and adolescence the eye grows in length, but in myopes it grows too long, and light entering the eye is then focused in front of the retina rather than on it. This results in a blurred image. This refractive error can be corrected with glasses, contact lenses or surgery. However, the eye remains longer, the retina is thinner, and this may lead to , glaucoma or macular degeneration, especially with higher degrees of myopia. Myopia is highly heritable, although up to now, little was known about the .

To find the genes responsible, researchers from Europe, Asia, Australia and the United States collaborated as the Consortium for Refraction and Myopia (CREAM). They analysed genetic and data of over 45,000 people from 32 different studies, and found 24 new genes for this trait, and confirmed two previously reported genes. Interestingly, the genes did not show significant differences between the European and Asian groups, despite the higher prevelance among Asian people. The new genes include those which function in brain and signalling, the structure of the eye, and . The genes lead to a high risk of myopia and carriers of the high-risk genes had a tenfold increased risk.

It was already known that , such as reading, lack of outdoor exposure, and a higher level of education can increase the risk of myopia. The condition is more common in people living in urban areas. An unfavourable combination of genetic predisposition and environmental factors appears to be particularly risky for development of myopia. How these environmental factors affect the newly identified genes and cause myopia remains intriguing, and will be further investigated by the consortium.

Professor Chris Hammond from the Department of Twin Research and Genetic Epidemiology at King's College London, and lead author of the paper, said: 'We already knew that myopia – or short-sightedness – tends to run in families, but until now we knew little about the genetic causes. This study reveals for the first time a group of new genes that are associated with myopia and that carriers of some of these have a 10-fold increased risk of developing the condition.

'Currently myopia is corrected with glasses or contact lenses, but now we understand more about the genetic triggers for the condition we can begin to explore other ways to correct it or prevent progression. It is an extremely exciting step forward which could potentially lead to better treatments or prevention in the future for millions around the world.'

Currently, possibilities to reduce progression of are very limited. While one drug, called atropine, may reduce progression, it dilates the pupil and causes problems with light sensitivity and difficulty with reading. New options are necessary. Chances are good that the insights gained from this study will provide openings for development of new strategies.

More information: Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia, Nature Genetics, Advance Online Publication, DOI: 10.1038/ng.2554

Related Stories

Medication slows progression of myopia in children

Aug 26, 2008

Daily treatment with a medication called pirenzepine can slow the rate of progressive myopia, or nearsightedness, in children, reports a study in the August issue of the Journal of AAPOS (American Association for Pediatric Op ...

Recommended for you

Throwing a loop to silence gene expression

9 hours ago

All human cells contain essentially the same DNA sequence – their genetic information. How is it possible that shapes and functions of cells in the different parts of the body are so different? While every cell's DNA contains ...

A nucleotide change could initiate fragile X syndrome

Sep 01, 2014

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

alfie_null
not rated yet Feb 11, 2013
As myopia is so prevalent, is there some benefit conferred by having these genes?