Researchers reveal mechanism to halt cancer cell growth, discover potential therapy

February 4, 2013

University of Pittsburgh Cancer Institute (UPCI) researchers have uncovered a technique to halt the growth of cancer cells, a discovery that led them to a potential new anti-cancer therapy.

When deprived of a key protein, some cancer cells are unable to properly divide, a finding described in the cover story of the February issue of the . This research is supported in part by a grant from the National Institutes of Health.

"This is the first time anyone has explained how altering this protein at a key stage in can stop ," said Bennett Van Houten, Ph.D., the Richard M. Cyert Professor of at UPCI and senior author of the research paper. "Our hope is that this discovery will spur the development of a new type of cancer drug that targets this process and could work synergistically with existing drugs."

All cells have a network of mitochondria, which are tiny structures inside cells that are essential for energy production and metabolism. Dynamin-related protein 1 (Drp1) helps mitochondria undergo fission, a process by which they split themselves into two new mitochondria.

In breast or made to be deficient in Drp1, the researchers observed a huge network of highly fused mitochondria. These cancer cells appear to have stalled during a stage in cell division called G2/M. Unable to divide into new cells, the cancer growth stops. Those cells that do try to divide literally tear their chromosomes apart, causing more stress for the cell.

The cover of the Journal of Cell Science includes a colorful image of a cell deficient in Drp1 that is stuck during the process of separating its chromosomes into two identical sets to be divided among two new cells. Lead author Wei Qian, Ph.D., a postdoctoral fellow in Dr. Van Houten's laboratory, captured the image using a at Pitt's Center for Biologic Imaging run by Simon Watkins, Ph.D., a co-author of this study.

"Once we revealed this process for halting cancer cell growth by knocking out Drp1, we began looking into existing compounds that might utilize a similar mechanism," said Dr. Van Houten. "Now that we know affecting mitochondria in this manner inhibits cell growth, we could target drugs to this biological process to treat cancer."

The researchers found a compound called Mdivi-1 that makes cancer cells behave much the way they do when deficient in Drp-1. When used in combination with cisplatin, a drug already used to treat many solid cancers, rapid cell death can be induced in a wide range of cancer cells. This means that Mdivi-1 makes cisplatin work better.

Mdivi-1 is being tested in cancer cells in a laboratory setting. Those tests show that, while the compound acts as though it is depriving cancer cells of Drp1, it is actually using a different mechanism.

"To me, that's the serendipity of science, and it's really exciting," said Dr. Van Houten, who hopes eventually to move his laboratory tests on Mdivi-1 to clinical trials. "We were on the hunt for a drug that could make deficient in Drp1 and, instead, we found a new that seems to work really well."

Explore further: Cancer-killing compound spares healthy cells

Related Stories

Cancer-killing compound spares healthy cells

January 4, 2012

Lithocholic acid (LCA), naturally produced in the liver during digestion, has been seriously underestimated. A study published in the journal Oncotarget shows that LCA can kill several types of cancer cells, such as those ...

Recommended for you

Combination therapy can prevent cytostatic resistance

November 26, 2015

Researchers at Karolinska Institutet have found a new way of preventing resistance to cytostatics used in the treatment of cancers such as medulloblastoma, the most common form of malignant brain tumour in children. The promising ...

Forecasting the path of breast cancer in a patient

November 23, 2015

USC researchers have developed a mathematical model to forecast metastatic breast cancer survival rates using techniques usually reserved for weather prediction, financial forecasting and surfing the Web.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.