Drugs targeting blood vessels may be candidates for treating Alzheimer's

March 7, 2013

(Medical Xpress)—University of British Columbia researchers have successfully normalized the production of blood vessels in the brain of mice with Alzheimer's disease (AD) by immunizing them with amyloid beta, a protein widely associated with the disease.

While AD is typically characterized by a build-up of plaques in the brain, recent research by the UBC team showed a near doubling of blood vessels in the brain of mice and humans with AD.

The new study, published online last week in Scientific Reports, a Nature journal, shows a reduction of brain in mice immunized with amyloid beta – a phenomenon subsequently corroborated by human clinical data – as well as a reduction of plaque build-up.

"The discovery provides further evidence of the role that an overabundance of plays in AD, as well as the potential efficacy of amyloid beta as basis for an AD vaccine," says lead investigator Wilfred Jefferies, a professor in UBC's Michael Smith Laboratories.

"Now that we know is a factor in AD, if follows that drugs targeting blood vessels may be good candidates as an AD treatment."

AD accounts for two-thirds of all cases of . The number of Canadians living with dementia is expected to reach 1.4 million by 2013, according to the Alzheimer's Society of Canada.

Explore further: Case of mistaken identity: Study questions role of A-beta molecules in Alzheimer's disease pathology

More information: www.nature.com/srep/2013/130228/srep01354/full/srep01354.html

Related Stories

Recommended for you

Predicting change in the Alzheimer's brain

October 6, 2015

MIT researchers are developing a computer system that uses genetic, demographic, and clinical data to help predict the effects of disease on brain anatomy.

Old drug offers new hope to treat Alzheimer's disease

September 21, 2015

Scientists from the Gladstone Institutes have discovered that salsalate, a drug used to treat rheumatoid arthritis, effectively reversed tau-related dysfunction in an animal model of frontotemporal dementia (FTD). Salsalate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.