Case of mistaken identity: Study questions role of A-beta molecules in Alzheimer's disease pathology

June 28, 2011
Case of mistaken identity: Study questions role of A-beta molecules in Alzheimer's disease pathology
Confocal microscope image of neurons in the 3xTgAD mice stained for the amyloid-ß (Aß) precursor protein (APP) showing APP (green) within these nerve cells which were not labeled by antibodies that detect free Aß, the peptide cleavage product of APP that, when released from APP by proteases will be secreted and for Alzheimer plaques outside nerved cells in the brain of these mice similar to Alzheimer patients. Credit: Edward B. Lee, Perelman School of Medicine at the University of Pennsylvania

Increasingly, researchers are suggesting that amyloid plaques and neurofibrillary tangles may be relatively late manifestations in the course of Alzheimer's disease (AD) pathology. Identifying earlier events in the development of AD remains a challenge. The laboratory of Virginia M.-Y. Lee, PhD, director of the Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, was the first, in 1993, to demonstrate unequivocally the presence of A-beta peptides -- a hallmark of AD -- inside neurons. But their role in Alzheimer's disease remained unclear.

"It was exciting when a 'triple transgenic' mouse model of AD was reported in 2003 to show robust staining of cells interpreted as A-beta peptides inside neurons," says Edward Lee, MD, PhD, assistant professor of Pathology and Laboratory Medicine, co-author on a study just out in the that questions the role of A-beta peptides in AD pathology.

The triple transgenic mouse has since become a popular model in AD studies, says Edward Lee. In these mice, A-beta molecules were detected before amyloid-plaque and neurofibrillary-tangle pathology showed up, suggesting that intraneuronal A-beta peptides lead to , which then lead to neurofibrillary tangles inside neurons.

The Penn researchers examined the trajectory of neuronal inclusions over time using rigorous biochemical and genetic methods. Virginia Lee's group discovered a case of mistaken identity: The intraneuronal molecules appear not to be A-beta peptides themselves, but rather the A-beta nested within its parent protein, the A-beta . What's more, blocking A-beta peptides from forming in the triple had no effect on the formation of neurofibrillary tangles.

According to Virginia Lee, this finding is significant for Alzheimer drug development because it underlines the need for tau-focused drug discovery for AD since the idea that intracellular A-beta drives tangle formation was not substantiated. Therapies aimed at blocking A-beta production may not have any effect on tangle formation, which is consistent with human clinical trial data to date.

The role of intraneuronal A-beta in AD is still unclear, but these results have profound implications for studies of mechanisms of AD and for AD drug discovery since mouse models of presumptive intracellular A-beta are widely used, state the authors.

Please take a look at the Alzforum webinar about the debate on intraneuronal A-beta as a potential instigator of Alzheimer's disease: www.alzforum.org/res/for/journ … etail.asp?liveID=193

More information: Paper: www.jneurosci.org/content/31/21/7691.abstract

Related Stories

Recommended for you

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Study suggests link between autism, pain sensitivity

July 24, 2017
New research by a UT Dallas neuroscientist has established a link between autism spectrum disorder (ASD) and pain sensitivity. 

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.