Researchers build functional ovarian tissue in lab

March 26, 2013

A proof-of-concept study suggests the possibility of engineering artificial ovaries in the lab to provide a more natural option for hormone replacement therapy for women. In Biomaterials, a team from Wake Forest Baptist Medical Center's Institute for Regenerative Medicine report that in the laboratory setting, engineered ovaries showed sustained release of the sex hormones estrogen and progesterone.

Although there are medications that can compensate for the loss of female sex , the drugs are often not recommended for long-term use due to the increased risk of heart disease and .

"Our goal is to develop a tissue- or cell-based therapy – essentially an artificial ovary– to deliver sex hormones in a more natural manner than drugs," said Emmanuel C. Opara, Ph.D., professor of regenerative medicine and senior author. "A bioartificial ovary has the potential to secrete hormones in a natural way based on the body's needs, rather than the patient taking a specific dose of drugs each day."

Ovaries are the female reproductive organs that produce eggs that are fertilized for pregnancy as well as secrete hormones important to bone and cardiovascular health. The loss of ovarian function can be due to surgical removal, chemotherapy and radiation treatments for certain , and menopause. The effects of hormone loss can range from hot flashes and to infertility and increased risk of osteoporosis and heart disease.

"This research project is interesting because it offers hope to replace natural ovarian hormones in women with premature ovarian failure or in women going through menopause," Tamer Yalcinkaya, M.D., associate professor and section head of at Wake Forest Baptist. "The graft format would bring certain advantages: it would eliminate pharmacokinetic variations of hormones when administered as drugs and would also allow body's feedback mechanisms to control the release of ovarian hormones."

The project to engineer a bioartificial ovary involves encapsulating ovarian cells inside a thin membrane that allows oxygen and nutrients to enter the capsule, but would prevent the patient from rejecting the cells. With this scenario, functional ovarian tissue from donors could be used to engineer bioartificial ovaries for women with non-functioning ovaries.

The Wake Forest Baptist team isolated the two types of endocrine cells found in ovaries (theca and granulosa) from 21-day-old rats. The cells were encapsulated inside materials that are compatible with the body. The scientists evaluated three different ways of arranging the cells inside the capsules.

The function of the capsules was then evaluated in the lab by exposing them to follicle-stimulating hormone and luteinizing hormone, two hormones that stimulate ovaries to produce sex hormones. The arrangement of cells that most closely mimicked the natural ovary (layers of cells in a 3-D shape) secreted levels of estrogen that were 10 times higher than other cell arrangements.

The capsules also secreted progesterone as well as inhibin and activin, two hormones that interact with the pituitary and hypothalamus and are important to the body's natural system to regulate the production of female .

"Cells in the multilayer capsules were observed to function in similar fashion to the native ovaries," said Opara. "The secretion of inhibin and activin secretion suggests that these structures could potentially function as an artificial ovary by synchronizing with the body's innate control system."

Opara said the next step in the research, already underway, is to evaluate the function of the ovarian structures in animals.

Explore further: Surgeons recreate eggs in vitro to treat infertility

Related Stories

Surgeons recreate eggs in vitro to treat infertility

October 2, 2012

Regenerative-medicine researchers have moved a promising step closer to helping infertile, premenopausal women produce enough eggs to become pregnant. Today, surgeons at Wake Forest Baptist Medical Center's Institute for ...

Study prompts rethink of how ovaries develop

February 8, 2013

(Medical Xpress)—New research from the University of Adelaide will rewrite the text books on how an ovary is formed, as well as providing new insights into women's health and fertility.

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.