Low incidence of venous insufficiency in MS

Results of a study using several imaging methods showed that CCSVI (chronic cerebrospinal venous insufficiency) occurs at a low rate in both people with multiple sclerosis (MS) and non-MS volunteers, contrary to some previous studies. The research by an interdisciplinary team at The University of Texas Health Science Center at Houston (UTHealth) was published in a recent early online edition of the Annals of Neurology.

"Our results in this phase of the study suggest that findings in the major veins that drain the brain consistent with CCSVI are uncommon in individuals with MS and quite similar to those found in our non-MS volunteers," said Jerry Wolinsky, M.D., principal investigator and the Bartels Family and Opal C. Rankin Professor of Neurology at The UTHealth Medical School. "This makes it very unlikely that CCSVI could be the cause of MS, or contribute in an important manner to how the disease can worsen over time." Wolinsky is also a member of the faculty of The University of Texas Graduate School of at Houston and director of the UTHealth Group.

CCSVI has been described by Italian Paolo Zamboni, M.D., as a new disorder in which veins draining the central nervous system are abnormal. Zamboni's published research linked CCSVI to MS. Not all researchers have been able to duplicate his results.

UTHealth was one of three institutions in the United States to receive an initial grant to study CCSVI in multiple sclerosis (MS). The grant was part of a $2.3 million joint commitment from the National MS Society and the MS Society of Canada.

The UTHealth team tested several imaging methods including ultrasound, with an intravenous contrast agent, and direct radiologic investigation of the major veins by direct injection of veins with radio-opaque contrast. The goal was to validate a consistent, reliable diagnostic approach for CCSVI, determine whether CCSVI was specific to MS and if CCSVI contributed to disease activity.

The team was blinded to the participant's diagnosis throughout the study. Doppler ultrasound was used to investigate venous drainage in 276 people with and without MS. Using the criteria described by Zamboni for the diagnosis of CCVSI, UTHealth researchers found less prevalence of CCVSI than in some previous studies and no statistical difference between those with MS and those without MS. Detailed experience with the other imaging approaches are being readied for publication.

Multiple sclerosis is an unpredictable, often disabling disease of the , interrupting the flow of information within the brain and from the brain to the body. It affects more than 400,000 people in the United States and 2.1 million in the world.

add to favorites email to friend print save as pdf

Related Stories

MRI findings shed light on multiple sclerosis

Aug 21, 2012

New magnetic resonance imaging (MRI) research shows that changes in brain blood flow associated with vein abnormalities are not specific for multiple sclerosis (MS) and do not contribute to its severity, despite what some ...

FDA issues warning on controversial MS treatment

May 10, 2012

(HealthDay) -- Doctors and patients need to be aware of the potential risk of injuries and death associated with an experimental treatment for multiple sclerosis called liberation therapy, the U.S. Food and ...

Recommended for you

Surprising new role for calcium in sensing pain

5 hours ago

When you accidentally touch a hot oven, you rapidly pull your hand away. Although scientists know the basic neural circuits involved in sensing and responding to such painful stimuli, they are still sorting ...

Neurons in human skin perform advanced calculations

Sep 01, 2014

Neurons in human skin perform advanced calculations, previously believed that only the brain could perform. This is according to a study from Umeå University in Sweden published in the journal Nature Ne ...

Memory in silent neurons

Aug 31, 2014

When we learn, we associate a sensory experience either with other stimuli or with a certain type of behavior. The neurons in the cerebral cortex that transmit the information modify the synaptic connections ...

User comments