New mechanism for long-term memory formation discovered

March 25, 2013

UC Irvine neurobiologists have found a novel molecular mechanism that helps trigger the formation of long-term memory. The researchers believe the discovery of this mechanism adds another piece to the puzzle in the ongoing effort to uncover the mysteries of memory and, potentially, certain intellectual disabilities.

In a study led by Marcelo Wood of UC Irvine's Center for the of Learning & Memory, the team investigated the role of this mechanism – a gene designated Baf53b – in long-term memory formation. Baf53b is one of several proteins making up a molecular complex called nBAF.

Mutations in the proteins of the nBAF complex have been linked to several intellectual disorders, including Coffin-Siris syndrome, Nicolaides-Baraitser syndrome and sporadic autism. One of the key questions the researchers addressed is how mutations in components of the nBAF complex lead to cognitive impairments.

In their study, Wood and his colleagues used mice bred with mutations in Baf53b. While this genetic modification did not affect the mice's ability to learn, it did notably inhibit long-term memories from forming and severely impaired synaptic function.

"These findings present a whole new way to look at how long-term memories form," said Wood, associate professor of neurobiology & behavior. "They also provide a mechanism by which mutations in the proteins of the nBAF complex may underlie the development of intellectual disability disorders characterized by significant cognitive impairments."

How does this mechanism regulate gene expression required for long-term memory formation? Most genes are tightly packaged by a chromatin structure – chromatin being what compacts DNA so that it fits inside the nucleus of a cell. That compaction mechanism represses gene expression. Baf53b, and the nBAF complex, physically open the chromatin structure so specific genes required for long-term memory formation are turned on. The mutated forms of Baf53b did not allow for this necessary gene expression.

"The results from this study reveal a powerful new mechanism that increases our understanding of how genes are regulated for ," Wood said. "Our next step is to identify the key genes the nBAF complex regulates. With that information, we can begin to understand what can go wrong in intellectual disability disorders, which paves a path toward possible therapeutics."

The findings appear online today in Nature Neuroscience.

Explore further: Uncovering secrets of how intellect and behavior emerge during childhood

Related Stories

Novel storage mechanism allows command, control of memory

March 5, 2013

(Medical Xpress)—Introductions at a party seemingly go in one ear and out the other. However, if you meet someone two or three times during the party, you are more likely to remember his or her name. Your brain has taken ...

Recommended for you

Wiring rules untangle brain circuitry

December 1, 2015

Our brains contain billions of neurons linked through trillions of synaptic connections, and although disentangling this wiring may seem like mission impossible, a research team from Baylor College of Medicine took on the ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.