Cisplatin-resistant cancer cells sensitive to experimental anticancer drugs, PARP inhibitors

Poly (ADP-ribose) polymerase inhibitors may be a novel treatment strategy for patients with cancer that has become resistant to the commonly used chemotherapy drug cisplatin, according to data from a preclinical study published in Cancer Research, a journal of the American Association for Cancer Research.

"Cisplatin is one of the most widely used conventional, anticancer ," said Guido Kroemer, M.D., Ph.D., professor at University Paris Descartes in Paris, France. "Unfortunately, most patients respond only transiently to cisplatin therapy because their develop ways to resist the effects of the drug."

Kroemer and colleagues set out to identify the that arise as cancer cells become resistant to cisplatin in the hope that the information could provide clues to potential new therapies. They focused their study on non-small cell lung cancer (NSCLC) cells because NSCLC is the leading cause of cancer-related morbidity and mortality worldwide and patients with NSCLC are frequently treated with cisplatin, according to Kroemer.

The researchers found that most NSCLC cell lines resistant to cisplatin had high levels of the protein poly (ADP-ribose) polymerase 1 (PARP1) and elevated amounts of poly (ADP-ribosyl) (PAR). In addition, they found that the PARP1 was hyperactivated. They observed similar results for cisplatin-resistant mesothelioma, ovarian cancer and cell lines.

When cisplatin-resistant NSCLC cell lines with high levels of hyperactivated PARP1 and PAR were exposed to each of two distinct PARP inhibitors, the cell lines initiated a cellular process that resulted in their death. Levels of PAR were more predictive of response to PARP inhibitors than were levels of PARP1 itself, suggesting that PAR may be an effective biomarker of response to cisplatin, according to Kroemer.

He and his colleagues then examined whether treatment with a PARP inhibitor affected the growth of tumors in mice xenografted with human NSCLC cell lines. They found that treatment significantly slowed tumor growth.

"Our data show that in most cases, cisplatin resistance is linked to stereotyped biochemical changes in cancer cells that render them vulnerable to PARP inhibitors," said Kroemer. "This has clear implications for new treatment regimens and for developing biomarkers of response to . We are following up these exciting clinical possibilities in our laboratory."

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Generation of tanners see spike in deadly melanoma

5 hours ago

(AP)—Stop sunbathing and using indoor tanning beds, the acting U.S. surgeon general warned in a report released Tuesday that cites an alarming 200 percent jump in deadly melanoma cases since 1973.

Penn team makes cancer glow to improve surgical outcomes

5 hours ago

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

Cancer: Tumors absorb sugar for mobility

17 hours ago

Cancer cells are gluttons. We have long known that they monopolize large amounts of sugar. More recently, it became clear that some tumor cells are also characterized by a series of features such as mobility or unlikeliness ...

User comments