New discovery in fight against deadly meningococcal disease

May 23, 2013

Professor Michael Jennings, Deputy Director of the Institute for Glycomics at Griffith University, was part of an international team that discovered the previously unknown pathway of how the bacterium colonizes people.

"Neisseria is an important that can cause rapidly progressing, life threatening meningitis and meningococcal in humans," Professor Jennings said.

"Until now we have not known how it attaches to the . It has been a long-standing mystery how it attaches to the airway to colonise"

People can be carriers of the bug and not get any symptoms, while some people progress to . To understand why, we need to know the detail of how the colonises the airway. Now that the pathway has been identified we can study this process to understand how invasive disease occurs. This is especially important considering the rapidly progressing and serious outcomes of meningococcal disease.

"If you understand how the bug first attaches and how it first signals its attachment then we may identify new or treatment procedures," Professor Jennings said.

The findings were published Friday in the highly regard PLOS Pathogens journal as featured research "Dual Pili Post-translational Modifications Synergize to Mediate Meningococcal Adherence to Platelet Activating Factor Receptor on Human Airway Cells."

The paper states: There is no fully protective vaccine against this pathogen in current use and the key processes that dictate the transition from harmless carriage of the bacterium in the airway (the case for the vast majority of colonised hosts) to invasive disease are largely undefined. A key missing link in this organism's interaction with the human host is the identity of the receptor that is the first point of contact for the organism within the airway.

Professor Jennings said the receptor is used by a range of airway pathogens and the bacterium mimics a human structure to attach to this receptor.

"It's not actually protein that attaches to the receptor but decorations on the protein that are known as post-translational modifications. One of these is a sugar structure, which of course is of great interest to our work here at Glycomics," he said.

The Institute of Glycomics is a world leader in the study of glycans and carbohydrates (sugars) and how they behave in terms of disease prevention and cure.

Explore further: Pathogenic bacteria adhering to the human vascular wall triggers vascular damage during meningococcal sepsis

Related Stories

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.