Telomere length influences cancer cell differentiation

Researchers from the Japanese Foundation for Cancer Research in Tokyo have discovered that forced elongation of telomeres (extensions on the end of chromosomes) promotes the differentiation of cancer cells, probably reducing malignancy, which is strongly associated with a loss of cell differentiation. They report their findings in a manuscript published online ahead of print, in the journal Molecular and Cellular Biology.

"Cancer cells may maintain short telomeres to maintain their undifferentiated state," says Hiroyuki Seimiya, a researcher on the study.

Telomeres are protective extensions on the ends of chromosomes, which shorten as cells age, like an hourglass running down. They protect the end of the chromosome from deterioration or from fusion with neighboring chromosomes. Without telomeres chromosomes would progressively lose genetic information as cells divide and replicate.

Cancer cells have shorter telomeres compared to healthy cells, but they guard their immortality by maintaining these telomeres' length.

In the study, the forced elongation of ' telomeres suppressed a number of genes and proteins that appear to be involved in tumor malignancy, according to the report. For example, one of these factors, N-cadherin, is involved in prostate cancer metastasis.

Based on their results, the investigators now propose that telomeres also modulate the behavior of cells by controlling , by as yet unknown mechanisms, says Seimiya. His research, he says, may ultimately lead to new types of treatments for cancer.

More information: www.asm.org/images/Communicati… ps/2013/0613telo.pdf

Related Stories

Researchers successfully map fountain of youth

date Mar 27, 2013

In collaboration with an international research team, University of Copenhagen researchers have for the first time mapped telomerase, an enzyme which has a kind of rejuvenating effect on normal cell ageing. The findings have ...

Telomere shortening affects muscular dystrophy gene

date May 06, 2013

(Medical Xpress)—Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disorder that causes the muscles of the upper body to waste away. It is unusual in that symptoms do not usually appear until sufferers are in their ...

Recommended for you

Breathless: How blood-oxygen levels regulate air intake

date 1 hour ago

Researchers have unraveled the elusive process by which small, highly vascular clusters of sensory cells in the carotid arteries "taste the blood," as a 1926 essay put it—the initial step in regulating ...

Sex matters ... even for liver cells

date 2 hours ago

Female liver cells, and in particular those in menopaused women, are more susceptible to adverse effects of drugs than their male counterparts, according to new research carried out by the JRC. It is well ...

Caring for blindness: A new protein in sight?

date 3 hours ago

Vasoproliferative ocular diseases are responsible for sight loss in millions of people in the industrialised countries. Many patients do not currently respond to the treatment offered, which targets a specific ...

When genes are expressed in reverse

date 3 hours ago

Genes usually always be expressed as in Western writing: from left to right on the white canvas of our DNA. So when we speak of the activity of our genome, in fact we are referring to the expression of genes ...

Technique could speed biologic drugs

date 8 hours ago

Antibodies are specific molecules that can lock onto a particular cellular structure to start, stop or otherwise temper a biological process. Because they are so specific, antibodies are at the forefront ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.