Researchers unravel genetics of dyslexia and language impairment

June 13, 2013

A new study of the genetic origins of dyslexia and other learning disabilities could allow for earlier diagnoses and more successful interventions, according to researchers at Yale School of Medicine. Many students now are not diagnosed until high school, at which point treatments are less effective.

The study is published online and in the July print issue of the American Journal of Human Genetics. Senior author Jeffrey R. Gruen, M.D., professor of pediatrics, genetics, and investigative medicine at Yale, and colleagues analyzed data from more than 10,000 children born in 1991-1992 who were part of the Avon Longitudinal Study of Parents and Children (ALSPAC) conducted by investigators at the University of Bristol in the United Kingdom.

Gruen and his team used the ALSPAC data to unravel the genetic components of reading and verbal language. In the process, they identified genetic variants that can predispose children to dyslexia and , increasing the likelihood of earlier diagnosis and more effective interventions.

Dyslexia and language impairment are common learning disabilities that make reading and verbal language skills difficult. Both disorders have a substantial , but despite years of study, determining the root cause had been difficult.

In previous studies, Gruen and his team found that dopamine-related genes ANKK1 and DRD2 are involved in language processing. In further non-, they found that to nicotine has a strong negative affect on both reading and language processing. They had also previously found that a gene called DCDC2 was linked to dyslexia.

In this new study, Gruen and colleagues looked deeper within the DCDC2 gene to pinpoint the specific parts of the gene that are responsible for dyslexia and language impairment. They found that some variants of a gene regulator called READ1 (regulatory element associated with dyslexia1) within the DCDC2 gene are associated with problems in reading performance while other variants are strongly associated with problems in verbal language performance.

Gruen said these variants interact with a second dyslexia risk gene called KIAA0319. "When you have risk variants in both READ1 and KIAA0319, it can have a multiplier effect on measures of reading, language, and IQ," he said. "People who have these variants have a substantially increased likelihood of developing dyslexia or language impairment."

"These findings are helping us to identify the pathways for fluent reading, the components of those pathways; and how they interact," said Gruen. "We now hope to be able to offer a pre-symptomatic diagnostic panel, so we can identify children at risk before they get into trouble at school. Almost three-quarters of these children will be reading at grade level if they get early intervention, and we know that intervention can have a positive lasting effect."

Explore further: New piece in reading ability 'jigsaw'

More information: dx.doi.org/10.1016/j.ajhg.2013.05.008

Related Stories

New piece in reading ability 'jigsaw'

October 1, 2008

(PhysOrg.com) -- A gene thought to be associated with dyslexia is also connected with reading ability in the general population, according to Oxford University research.

Tackling dyslexia before kids learn to read

April 5, 2012

For children with dyslexia, the trouble begins even before they start reading and for reasons that don't necessarily reflect other language skills. That's according to a report published online on April 5 in Current Biology, ...

Action video games boost reading skills, study finds

February 28, 2013

Much to the chagrin of parents who think their kids should spend less time playing video games and more time studying, time spent playing action video games can actually make dyslexic children read better. In fact, 12 hours ...

Recommended for you

Researchers discover otulipenia, a new inflammatory disease

August 22, 2016

National Institutes of Health researchers have discovered a rare and sometimes lethal inflammatory disease - otulipenia - that primarily affects young children. They have also identified anti-inflammatory treatments that ...

Face shape is in the genes

August 25, 2016

Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.