Information in brain cells' electrical activity combines memory, environment, and state of mind

July 17, 2013

(Medical Xpress)—The information carried by the electrical activity of neurons is a mixture of stored memories, environmental circumstances, and current state of mind, scientists have found in a study of laboratory rats. The findings, which appear in the journal PLoS Biology, offer new insights into the neurobiological processes that give rise to knowledge and memory recall.

The study was conducted by Eduard Kelemen, a former graduate student and post-doctoral associate at the State University of New York (SUNY) Downstate Medical Center, and André Fenton, a professor at New York University's Center for Neural Science and Downstate Medical Center. Kelemen is currently a postdoctoral fellow at University of Tuebingen in Germany.

The idea that recollection is not merely a replay of our stored experiences dates back to Plato. He believed that memory retrieval was, in fact, a much more intricate process—a view commonly accepted by today's and couched in the theory of constructive recollection. The theory posits that during memory retrieval, information across different experiences may combine during recall to form a single experience. Such a process may explain the prevalence of . For example, studies have shown that people mistakenly recalled seeing a school bus in a movie if the bus was mentioned after they watched the movie.

In addition, other scholarship has shown that a subject's mindset can also influence the retrieved information. For example, looking at a house from the perspective of a homebuyer or a burglar leads to different recollections—potential purchasers may recall the house's leaky roof while would-be burglars may remember where the jewelry is kept.

But while the psychological contours of retrieval are well-documented, very little is known about the neural activity that underlies this process.

With this in mind, Fenton and Kelemen centered their study on the neurophysiological processes rats employ as they solve problems that require memory retrieval. To do so, they employed techniques developed during the last two decades. These involve monitoring the electrical activity of neurons in the rats' hippocampus—the part of the brain used to encode new memories and retrieve old ones. By spotting certain types of neuronal activity, researchers have historically been able to perform what amounts to a mind reading exercise to decode what the rat is thinking and even comprehend the specifics of the rats' .

In their experiments, Fenton and Kelemen tested the viability of a concept, "cross-episode retrieval"— stimulating the brain activity in a given circumstance that was also activated in a previous, distinctive experience.

"Such cross-episode expression of past activity can create opportunities for generating novel associations and new information that was never directly experienced," the authors wrote.

To test their hypotheses, rats were placed in a stable, circular arena, then in a rotating, circular arena of the same size, followed by a return to the stable arena. In the rotating arena condition, the surface turned slowly, making it necessary for the rat to think about its location either in terms of the rotating floor or in terms of the stationary room.

Overall, the results showed district neural activity between the stable and rotating conditions. However, during the rotating task, the researchers intermittently observed "cross-episode retrieval"—that is, at times, neurons expressed patterns of electrical activity under the rotating-arena condition that were similar to those activity patterns that were used in the stable-arena condition. Notably, cross-episode retrieval occurred more frequently when the angular position of the rotating arena was about to complete a full rotation and return to the same position as in the stable condition, demonstrating that retrieval is influenced by the environment.

To show that cross-episode retrieval was influenced by current state of mind, Fenton and Kelemen took advantage of an earlier finding from their experiments: during the arena rotation, switches between signaling the rat's location in the stationary room and the rat's location on the rotating arena floor. Cross-episode retrieval was also more likely when neuronal activity represented the position of the rat in the stationary room than when it represented positions that rotate with the arena. This showed that retrieval is influenced by internal cognitive variables that are encoded by hippocampal discharge—i.e., a state of mind.

"These experiments demonstrate novel, key features of constructive human episodic memory in rat hippocampal discharge," explained Fenton, "and suggest a neurobiological mechanism for how experiences of different events that are separate in time can nonetheless comingle and recombine in the mind to generate new information that can sometimes amount to valuable, creative insight and knowledge."

Explore further: If you can remember it, you can remember it wrong

Related Stories

If you can remember it, you can remember it wrong

May 21, 2013

(Medical Xpress)—Native peoples in regions where cameras are uncommon sometimes react with caution when their picture is taken. The fear that something must have been stolen from them to create the photo is often inescapable. ...

Rats recall past to make daily decisions

May 3, 2012

(Medical Xpress) -- UCSF scientists have identified patterns of brain activity in the rat brain that play a role in the formation and recall of memories and decision-making. The discovery, which builds on the team's previous ...

Visualizing a memory trace

July 12, 2013

In mammals, a neural pathway called the cortico-basal ganglia circuit is thought to play an important role in the choice of behaviors. However, where and how behavioral programs are written, stored and read out as a memory ...

Recommended for you

Scientists identify neurons devoted to social memory

September 30, 2016

Mice have brain cells that are dedicated to storing memories of other mice, according to a new study from MIT neuroscientists. These cells, found in a region of the hippocampus known as the ventral CA1, store "social memories" ...

Throwing light on the brain's perception of transparency

September 30, 2016

Researchers have created a new optical illusion that helps reveal how our brains determine the material properties of objects – such as whether they are transparent, shiny, matte or translucent – just from looking at ...

Scientists track unexpected mechanisms of memory

September 29, 2016

Do you remember Simone Biles's epic gymnastics floor routine that earned her a fifth Olympic medal? Our brains hold on to memories like these via physical changes in synapses, the tiny connections between neurons.

Some brains are blind to moving objects

September 28, 2016

As many as half of people are blind to motion in some part of their field of vision, but the deficit doesn't have anything to do with the eyes.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.