Researchers offer new insights on cancer cell signaling

by William G. Gilroy
Researchers offer new insights on cancer cell signaling

(Medical Xpress)—A pair of studies by a team of University of Notre Dame researchers led by Crislyn D'Souza-Schorey, professor of biological sciences, sheds light on a biological process that is activated across a vast range of malignancies.

Wnt proteins are a large family of proteins that activate signaling pathways (a set of biological reactions in a cell) to control several vital steps in . In adults, Wnt-mediated functions are frequently altered in many types of cancers and, specifically, within cell subpopulations that possess stem cell-like properties.

In two studies, one in the recent issue of the journal Molecular and Cellular Biology and a second, published earlier this year in Science Signaling, D'Souza-Schorey's laboratory reports on the importance of the protein "ARF6" in Wnt signaling.

The best documented role of Wnt is its triggering of the canonical (idealized or generalized) signaling pathway that leads to the stabilization of a protein called beta-catenin. This in turn leads to activation of various that result in changes in a wide spectrum of cell behaviors.

"We have had a long-standing interest in understanding the role of ARF6 in ," D'Souza-Schorey said. "ARF6 is an interesting molecule at the nexus of several important cell-signaling pathways. Our interest in this line of investigation has only been heightened by emerging reports from many labs that ARF6 activity is dramatically increased in several cancers. In our most recent study, we show how ARF6 can propagate Wnt signaling leading to proliferative phenotypes that are frequently seen in epithelial tumors (a growth of irregularly shaped cells on the of an organ or gland)."

In the paper published in Science Signaling, the laboratory collaborated with researchers at the University of Utah to document the importance of ARF6-regulated activation of canonical Wnt signaling in the spread of melanoma. The study showed that a small molecule that prevents ARF6 activation could stop tumor invasion and the spread of the cancer.

"The relevance of Wnt signaling in human cancers is manifest by the frequency with which this pathway is aberrantly activated across a wide range of malignancies," D'Souza-Schorey said. "Given the number of Wnts, Wnt signaling has been difficult to target therapeutically. It is important to note that while there are many mechanisms that drive aberrant Wnt/beta-catenin signaling in diverse cancers, these different mechanisms nearly always occur in a mutually exclusive manner. Thus, a better understanding of mechanisms involved in Wnt signaling transduction offers several target molecules for cancer drug development."

Related Stories

Building the blood-brain barrier

Oct 27, 2008

Construction of the brain's border fence is supervised by Wnt/b-catenin signaling, report Liebner et al. in The Journal of Cell Biology.

Fingernails reveal clues to limb regeneration

Jun 12, 2013

Mammals possess the remarkable ability to regenerate a lost fingertip, including the nail, nerves and even bone. In humans, an amputated fingertip can sprout back in as little as two months, a phenomenon ...

New research provides clues on why hair turns gray

Jun 14, 2011

A new study by researchers at NYU Langone Medical Center has shown that, for the first time, Wnt signaling, already known to control many biological processes, between hair follicles and melanocyte stem cells can dictate ...

Recommended for you

How a common antacid could lead to cheaper anti-cancer drugs

2 hours ago

A popular indigestion medication can increase survival in colorectal cancer, according to research published in ecancermedicalscience. But in fact, scientists have studied this for years - and a group of cancer advocates want t ...

Vaccines may make war on cancer personal

2 hours ago

In the near future, physicians may treat some cancer patients with personalized vaccines that spur their immune systems to attack malignant tumors. New research led by scientists at Washington University ...

Funding to investigate an alternative to chemotherapy

3 hours ago

Professor Simon Rule, Professor in Haematology at Plymouth University Peninsula Schools of Medicine and Dentistry and Consultant Haematologist at Plymouth Hospitals NHS Trust, has been awarded a significant grant by Cancer ...

Enzyme may be key to cancer progression in many tumors

3 hours ago

Mutations in the KRAS gene have long been known to cause cancer, and about one third of solid tumors have KRAS mutations or mutations in the KRAS pathway. KRAS promotes cancer formation not only by driving ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.