Sugar makes cancer light-up in MRI scanners

UCL scientists have developed a new technique for detecting the uptake of sugar in tumors, using magnetic resonance imaging. Credit: UCL

A new technique for detecting cancer by imaging the consumption of sugar with magnetic resonance imaging (MRI) has been unveiled by UCL scientists. The breakthrough could provide a safer and simpler alternative to standard radioactive techniques and enable radiologists to image tumours in greater detail.

The new technique, called 'glucose chemical exchange saturation transfer' (glucoCEST), is based on the fact that tumours consume much more glucose (a type of sugar) than normal, healthy tissues in order to sustain their growth.

The researchers found that sensitising an MRI scanner to caused tumours to appear as bright images on MRI scans of mice.

Lead researcher Dr Simon Walker-Samuel, from the UCL Centre for Advanced Biomedical Imaging (CABI) said: "GlucoCEST uses to magnetically label glucose in the body. This can then be detected in tumours using conventional MRI techniques. The method uses an injection of normal sugar and could offer a cheap, safe alternative to existing methods for detecting tumours, which require the injection of radioactive material." Professor Mark Lythgoe, Director of CABI and a senior author on the study, said: "We can detect cancer using the same sugar content found in half a standard sized chocolate bar. Our research reveals a useful and cost-effective method for imaging cancers using MRI – a standard imaging technology available in many large hospitals."

Tumors use large quantities of glucose to sustain their growth. By injecting normal, unlabeled sugar, UCL scientists have developed a way to detect its accumulation in tumors using magnetic resonance imaging. Credit: Credit UCL

He continued: "In the future, patients could potentially be scanned in local hospitals, rather than being referred to specialist medical centres." The study is published in the journal Nature Medicine and trials are now underway to detect glucose in human cancers.

Glucose uptake varies within tumors, as demonstrated using a new technique developed by scientists at UCL. 'Hot' regions at the edge of the tumor show increased uptake compared with 'cold' central regions, which could be used in the future to determine the best therapies to give to individual patients. Credit: UCL

According to UCL's Professor Xavier Golay, another senior author on the study: "Our cross-disciplinary research could allow vulnerable patient groups such as pregnant women and young children to be scanned more regularly, without the risks associated with a dose of radiation." Dr Walker-Samuel added: "We have developed a new state-of-the-art imaging technique to visualise and map the location of tumours that will hopefully enable us to assess the efficacy of novel cancer therapies."

More information: The paper "Imaging glucose uptake and metabolism in tumors" is published online ahead of print in Nature Medicine, July 7th 2013.

Related Stories

New imaging process provides better picture of tumours

Oct 12, 2012

Cancer remains one of the leading causes of death in Europe and the world, and early detection and treatment remains vital in the fight. Researchers in Norway have validated a method of non-invasive imaging that they believe ...

Recommended for you

The impact of bacteria in our guts

10 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

10 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

11 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments