Study monitors DNA breaks and chromosome translocations in real time

by Lin Edwards report
A chromosome translocation is visualized in living cells by the colocalization of chromosome breaks marked with differently colored fluorescent proteins (green, red). Credit: Vassilis Roukos

(Medical Xpress)—Researchers in the U.S. have developed a new method to study damage to DNA and resultant translocations in living cells.

DNA damage occurs regularly in living cells as a result of normal cellular processes and because of environmental factors such as radiation. The damage is constantly repaired, but if the repairs fail a break may occur in the two DNA strands and the two sections of the then drift apart. This is referred to as a double-strand break (DSB), and is dangerous to the host cell because when the broken strands attempt to pair off again they have no template to follow and can pair with different chromosomes, producing a chromosome translocation, which is an unexpected rearrangement of the genes. Chromosome translocations are a hallmark of .

Researcher Vassilis Roukos, of the National Cancer Institute in Bethesda, Maryland, and colleagues used ultra-high throughput time-lapse to monitor chromosome translocations in real time. The team's aim was to study the events during and after translocations in order to increase our understanding of these processes, and they succeeded in capturing images of DSBs and other translocation events as they occurred.

The team used living with their DNA molecules engineered to split when exposed to a specific enzyme. They used fluorescent proteins to tag the broken ends and then used their microscope time-lapse imaging system to watch what happened over the next 36 hours.

This video is not supported by your browser at this time.
A chromosome translocation visualized in 3D. The translocation is visualized by the colocalization of chromosome breaks marked with differently colored fluorescent proteins (green, red). DNA is stained cyan. Credit: Vassilis Roukos

They found that there were three distinct phases in chromosome translocation. The first was the DNA segments moving around a little, in an apparent random search for a "partner" for the broken strands to pair with; the second was for two broken segments to line up, and the third was for the segments to join together. In most instances, the DSB segments immediately joined up with the correct partner, but on rare occasions two DSBs of different chromosomes paired instead. Co-author Tom Misteli, also of the National Cancer Institute, said these translocations are rare, being seen in only one in around every 300 cells.

The researchers also discovered that chromosome translocations commonly occurred within hours of the double-strand breaking, and that their occurrence was unrelated to the cell cycle.

Another finding was that the cell's DNA repair system enzymes had an influence on the formation of translocations. For example, when the researchers disabled one of these enzymes, DNA-dependent protein kinase (DNAPK) in some of the cells, a chromosome translocation was nearly 10 times as likely to occur than in cells with active DNAPK. Misteli said that while DNAPK was previously known to play a role in translocation formation, little was understood about how it operates, and the new study was able to shed more light on the processes involved. One finding was that the incorrect strands still line up when DNAPK is disabled, but they are much less likely to join together, indicating that DNAPK is necessary to prevent incorrect pairings.

Misteli said the next step in the research is to try to find ways of preventing the DNA repairs from going wrong. The paper was published on 9 August in the journal Science.

More information: Spatial Dynamics of Chromosome Translocations in Living Cells, Science 9 August 2013: Vol. 341 no. 6146 pp. 660-664 DOI: 10.1126/science.1237150

ABSTRACT
Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle–independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.

Related Stories

Scientists resolve how chromosomal mix-ups lead to tumors

Mar 29, 2012

(Medical Xpress) -- A new study by scientists from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health, resolves longstanding questions about ...

Abnormal DNA maintenance related to cancer

Dec 10, 2012

DNA, like houses and cars, needs ongoing maintenance. Rays of ultraviolet sunlight, chemical pollutants and normal biochemical processes in the cell can damage it. Cells routinely repair this damage before making proteins ...

New technique identifies first events in tumor development

Sep 29, 2011

A novel technique that enables scientists to measure and document tumor-inducing changes in DNA is providing new insight into the earliest events involved in the formation of leukemias, lymphomas and sarcomas, and could potentially ...

Recommended for you

Growing a blood vessel in a week

18 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

21 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

beleg
not rated yet Aug 11, 2013
Supplement:
Scientists discover that DNA damage occurs as part of normal brain activity
http://medicalxpr...ain.html
A non harmful effect when repair is successful. An alleged process of memory and learning.