Brain network decay detected in early Alzheimer's

August 19, 2013

In patients with early Alzheimer's disease, disruptions in brain networks emerge about the same time as chemical markers of the disease appear in the spinal fluid, researchers at Washington University School of Medicine in St. Louis have shown.

While two chemical markers in the spinal fluid are regarded as reliable indicators of early disease, the new study, published in JAMA Neurology, is among the first to show that scans of brain networks may be an equally effective and less invasive way to detect early disease.

"Tracking damage to these brain networks may also help us formulate a more detailed understanding of what happens to the brain before the onset of dementia," said senior author Beau Ances, MD, PhD, associate professor of neurology and of biomedical engineering.

Diagnosing Alzheimer's early is a top priority for physicians, many of whom believe that treating patients long before dementia starts greatly improves the chances of success.

Ances and his colleagues studied 207 older but cognitively normal research volunteers at the Charles F. and Joanne Knight Alzheimer's Disease Research Center at Washington University. Over several years, spinal fluids from the volunteers were sampled multiple times and analyzed for two markers of early Alzheimer's: changes in amyloid beta, the principal ingredient of Alzheimer's brain plaques, and in tau protein, a structural component of nerve cells.

The volunteers were also scanned repeatedly using a technique called resting state functional magnetic resonance imaging (fMRI). This scan tracks the rise and fall of blood flow in different brain regions as patients rest in the scanner. Scientists use the resulting data to assess the integrity of the default mode network, a set of connections between different brain regions that becomes active when the mind is at rest.

Earlier studies by Ances and other researchers have shown that Alzheimer's damages connections in the default mode network and other brain networks.

The new study revealed that this damage became detectable at about the same time that amyloid beta levels began to rise and tau levels started to drop in spinal fluid. The part of the default mode network most harmed by the onset of Alzheimer's disease was the connection between two brain areas associated with memory, the posterior cingulate and medial temporal regions.

The researchers are continuing to study the connections between brain network damage and the progress of early Alzheimer's disease in normal volunteers and in patients in the early stages of Alzheimer's-associated dementia.

Explore further: Family history of Alzheimer's affects functional connectivity

More information: JAMA Neurol. Published online August 19, 2013. DOI: 10.1001/.jamaneurol.2013.3253

Related Stories

Brain connectivity altered in type 2 diabetes

August 1, 2012

(HealthDay) -- Patients with type 2 diabetes mellitus (T2DM) have reduced functional connectivity in the default mode network, which is associated with insulin resistance in some brain regions, according to a study published ...

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.