Brain-damaging complications of malaria arise from immune response to parasite antigens absorbed by blood vessels

Malaria: Parasites inflict collateral damage in the brain
Without prompt medical attention, cerebral malaria can manifest as early as 10 days after being bitten by a mosquito infected with Plasmodium falciparum. Credit: iStockphoto/Thinkstock

Most deaths caused by the malarial parasite Plasmodium falciparum result from the onset of cerebral malaria. This severe neurological condition arises when parasites accumulate within the brain vasculature. Numerous studies over the years, using a mouse model of experimental cerebral malaria (ECM), have also revealed that host immune cells play a critical part.

Previous research from Laurent Rénia at the A*STAR Singapore Immunology Network had highlighted the prominent contribution of cells known as cytotoxic T lymphocytes (CTLs). His team has now uncovered the mechanism by which these cells promote ECM. CTLs are normally responsible for destroying cancerous or infected cells, but the researchers suspected that ECM may result from parasite-targeting CTLs that also attack and damage blood vessels in the brain.

Rénia and co-workers developed tools for detecting these CTLs and their . They then determined that mice infected with Plasmodium berghei ANKA (PbA), an ECM-causing parasite subtype, specifically elicit CTLs targeted against a particular polypeptide chunk from a parasite-derived protein. Mice infected with PbA began producing CTLs that recognize this polypeptide within five days, and these cells migrated to the brain shortly afterward. The researchers also examined three Plasmodium parasite strains that do not trigger ECM and were surprised to find that these elicited a similar CTL response.

A closer examination of blood vessels from the brains of infected mice revealed the missing piece of the puzzle. Red blood cells infected by ECM-causing parasites exhibit a tendency to accumulate within these vessels, while those from non-ECM-causing parasites do not. Rénia and co-workers determined that when this accumulation occurs, the endothelial cells that line these blood vessels absorb and then display CTL-targeted parasite proteins via a mechanism termed 'cross-presentation'.

These cross-presenting cells subsequently become targets for CTL-mediated destruction, creating leaks that give malarial parasites access to the brain. Importantly, prompt treatment with antimalarial drugs can rapidly clear these parasites from the blood vessels, thereby preventing the onset of ECM.

Rénia hypothesizes that ECM specifically arises from parasite species possessing some innate characteristic that makes infected cells 'stickier'. "We were surprised that this subtle difference in parasite biology of sequestration versus non-sequestration leads to such huge differences in pathology," he says. Despite there being other known examples of endothelial cross-presentation, the mechanism remains poorly understood. Rénia is keen to uncover how Plasmodium deflects the immune response. "This is an interesting biological question, because are not infected by these parasites," he says.

More information: Howland, S. W., Poh, C. M., Gun, S. Y., Claser, C., Malleret, B. et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria, EMBO Molecular Medicine 5, 984–999 (2013). onlinelibrary.wiley.com/doi/10… m.201202273/abstract

Related Stories

Researchers reveal malaria's deadly grip

date Jun 05, 2013

Researchers at the University of Copenhagen, in collaboration with Seattle Biomedical Research Institute, the University of Oxford, NIMR Tanzania and Retrogenix LTD, have identified how malaria parasites ...

Recommended for you

Why you need one vaccine for measles and many for the flu

date 18 hours ago

While the influenza virus mutates constantly and requires a yearly shot that offers a certain percentage of protection, old reliable measles needs only a two-dose vaccine during childhood for lifelong immunity. ...

Scientists turn blood into neural cells

date 18 hours ago

Scientists at McMaster University have discovered how to make adult sensory neurons from human patients simply by having them roll up their sleeve and providing a blood sample.

How our gut changes across the life course

date 20 hours ago

Scientists and clinicians on the Norwich Research Park have carried out the first detailed study of how our intestinal tract changes as we age, and how this determines our overall health.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.