Facebook and Twitter may yield clues to preventing the spread of disease

Facebook and Twitter could provide vital clues to control infectious diseases by using mathematical models to understand how we respond socially to biological contagions.

Cold and flu season prompts society to find ways to prevent the spread of disease though measures like vaccination all the way through to covering our mouths when we cough and staying in bed. These social responses are much more difficult to predict than the way biological contagion will evolve, but new methods are being developed to do just that.

Published this week in Science, Chris Bauch, a Professor of Applied Mathematics at the University of Waterloo, and co-author Alison Galvani from Yale University, review social factors in epidemiology. They suggest that the biological spread of diseases is intertwined with how society responds to those contagions.

"Social media and other data sources can be tapped for insights into how people will react when faced with a new disease control measure or the threat of infectious disease," said Professor Bauch. "We can create models from this data that allows researchers to observe how social contagion networks interact with better-known biological contagion networks."

Researchers found that—like disease—ideas, sentiments and information can also be contagious. They looked at examples such as pediatric vaccine coverage, public health communications aimed at reducing the spread of infection and acceptance of quarantine during the SARS outbreak.

"Predictive modelling isn't perfect, but it can help gauge how people will respond to measures," said Professor Bauch, who works with epidemiologists and population health researchers. "All sorts of variables can effect something as complex as the spread of disease. This is why it's important to bring a variety of perspectives into play, not just the biological considerations."

Bauch will continue to study the intersection of theory and data in order to build better predictive models. Understanding how networks and biological contagion networks interact with one another can help officials prepare to save lives in the case of future disease outbreaks.

More information: "Social Factors in Epidemiology," by C.T. Bauch, Science, DOI: 10.1126/science.1244492

Related Stories

Controlling contagion by restricting mobility

Jul 30, 2013

In an epidemic or a bioterrorist attack, the response of government officials could range from a drastic restriction of mobility—imposed isolation or total lockdown of a city—to moderate travel restrictions in some areas ...

Recommended for you

World 'losing the battle' to contain Ebola: MSF

23 minutes ago

International medical agency Medecins sans Frontieres said Tuesday the world was "losing the battle" to contain Ebola and called for a global biological disaster response to get aid and personnel to west Africa.

Mutating Ebola viruses not as scary as evolving ones

53 minutes ago

My social media accounts today are cluttered with stories about "mutating" Ebola viruses. The usually excellent ScienceAlert, for example, rather breathlessly informs us "The Ebola virus is mutating faster in humans than in animal hosts ...

War between bacteria and phages benefits humans

1 hour ago

In the battle between our immune systems and cholera bacteria, humans may have an unknown ally in bacteria-killing viruses known as phages. In a new study, researchers from Tufts University, Massachusetts ...

Ebola kills 31 people in DR Congo: WHO

3 hours ago

An outbreak of the Ebola virus in the Democratic Republic of Congo has killed 31 people and the epidemic remains contained in a remote northwestern region, UN the World Health Organization (WHO) said Tuesday.

Dengue fever strikes models in Japan

6 hours ago

A worsening outbreak of dengue fever in Japan has claimed its first celebrities—two young models sent on assignment to the Tokyo park believed to be its source.

Japanese researchers develop 30-minute Ebola test

6 hours ago

Japanese researchers said Tuesday they had developed a new method to detect the presence of the Ebola virus in 30 minutes, with technology that could allow doctors to quickly diagnose infection.

User comments