New theory in neuroscience: Common mechanisms in Fragile X and Down syndrome

October 1, 2013
This is Prof. Kyung-Tai Min from UNIST (Ulsan National Institute of Science and Technology). Credit: UNIST

A new common mechanism in Fragile X and Down syndrome has been identified by scientists at Ulsan National Institute of Science and Technology (UNIST), Korea and published in the world leading science journal Trends in Neurosciences.

Emerging evidence shows that the regulation of local protein synthesis in plays a crucial role in controlling synaptic morphogenesis and synaptic efficacy. However, scientist do not yet understand how local protein synthesis regulates dendritic spine morphology, a process that is important for learning and memory.

The research team led by Prof. Kyung-Tai Min from UNIST presented evidence that pathways controlled by DSCR1 and FMRP, genes implicated in two of the most common genetic causes of intellectual disabilities – DS and FXS converge to regulate spine morphogenesis, local protein synthesis, and neurotransmission.

Min's research team highlighted the *previous research work published in The EMBO Journal by Prof. Min, showing that some of the proteins altered in Fragile X and Down syndrome are common molecular triggers of in both disorders, DS and FXS.

*Title: DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis (The EMBO Journal (2012) 31, 3655 – 3666 )

They reviewed other genes encoded by chromosome 21 that may regulate dendritic spine morphogenesis and contribute to intellectual disabilities by acting through pathways involving FMRP and DSCR1.

The research work provided an important stepping stone in understanding the multiple roles of DSCR1 in neurons and in identifying a molecule that is closely linked to intellectual disability for both syndromes.

"We will continuously investigate whether reducing FMRP in DS mouse model or elevating DSCR1 in FMRP knockout mice could restore synaptic plasticity, dendritic spine morphogenesis, and local protein synthesis will further advance our understanding of both diseases," said Prof. Min, presenting future research plan.

"Further elucidation of the large functional protein-inter-action network that regulates local , spine morphogenesis, and synaptic transmission may also shed light on overlapping molecular pathways that cause intellectual disabilities in different disorders," added Prof. Min.

Explore further: Fragile X and Down syndromes share signalling pathway for intellectual disability

More information: Meeting at the crossroads: Common mechanisms in Fragile X and Down syndrome, http://dx.doi.org/10.1016/j.tins.2013.08.007

Related Stories

Fragile X syndrome protein linked to breast cancer progression

September 18, 2013

A research team led by scientists from VIB/KU Leuven, Belgium, and the University of Rome Tor Vergata, Italy, in collaboration with several research centers and hospitals in Italy, the United Kingdom and, Belgium, has identified ...

Recommended for you

Memory replay prioritizes high-reward memories

February 12, 2016

Why do we remember some events, places and things, but not others? Our brains prioritize rewarding memories over others, and reinforce them by replaying them when we are at rest, according to new research from the University ...

Watching sensory information translate into behavior

February 12, 2016

It remains one of the most fundamental questions in neuroscience: How does the flood of sensory information—everything an animal touches, tastes, smells, sees, and hears—translate into behavior?

Origins of 'rage' identified in brain in male animal model

February 11, 2016

Violent, unprovoked outbursts in male mice have been linked to changes in a brain structure tied to the control of anxiety and fear, according to a report by researchers from NYU Langone Medical Center to be published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.