New startup looking to cure genetic diseases by editing genes in new way

December 4, 2013 by Bob Yirka report

(Medical Xpress)—A new startup company called Editas Medicine (with $43 million in funding) is looking to expand on research that has already led to a system called Clustered Regularly Interspaced Short Palindromic Repeats/Cas (the Cas part is the name of a protein that is carried via RNA to the desired location in a DNA base pair) shortened to CRISPR/Cas. Such research, the team believes, will lead to a new type of gene therapy that could perhaps lead to cures for such diseases as Huntington's, sickle-cell anemia or cystic fibrosis.

Traditional gene therapy uses a technique to apply a healthy gene to a part of the DNA. That healthy gene can than override an unhealthy one and thus cure some diseases. Unfortunately, the technique doesn't work if the unhealthy gene causes disease by producing toxic proteins or if it leads to mutations that can override the healthy gene. CRISPR/Cas is better, the researchers at the new company say, because it can actually be used to replace unhealthy genes with healthy ones.

The system works by mimicking a process researchers discovered only a few years ago—some microbes they noted, use RNA to direct proteins to parts of the DNA to defend themselves. With CRISPR/Cas, the Cas9 protein is directed to a DNA base pair by RNA. Once there it sets to work editing the base pair or it can even work on larger segments. The editing process can result in repairs, an override or complete replacement of a base pair. It's that last option that sets the system ahead of the others, team members note—totally removing that cause disease and replacing them with ones that do not, could prove revolutionary to both and medicine in general.

Officials with the new startup are being coy about which diseases they will focus on first, though it appears likely they will start with those like Huntington's which are caused by a problem with a single base pair, rather than multiples.

Of course, they still have to make it all work in the way intended first. Currently, the RNA sometimes delivers the Cas9 to the wrong base pair, which is unacceptable, of course. There is also the problem of how to have the genetic edits realized throughout all of the cells in the body at the same time.

More information:

Related Stories

Recommended for you

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...

Molecular clocks control mutation rate in human cells

November 9, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.