Research teams unite for research on Lou Gehrig's Disease

December 10, 2013 by Chelsea Whyte

Lisa Miller and Paul Gelfand, biophysical chemists at the U.S. Department of Energy's Brookhaven National Laboratory, recently visited the Advanced Photon Source at Argonne National Laboratory to supplement their research into the cause of amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease.

They're studying the genetic form of the disease, which is caused by a mutation in a gene that instructs cells to make a particular protein within the . When the gene is mutated, the protein folds abnormally, clumping into aggregates that cause paralysis and eventually death.

"This protein uses two metals to fold correctly – copper and zinc," says Gelfand. "We can use the x-ray beams at a synchrotron to look at the status of the copper and zinc relative to the motor neurons in the spinal cord."

Getting a clear picture of structural deformations in extremely small biological samples requires tiny x-ray beams—smaller than what's currently available at Brookhaven's National Synchrotron Light Source (NSLS).

"We're using the very tiny beams at the Advanced Photon Source in order to focus in on those tiny aggregates, to understand how much copper there is, how much zinc there is, if there's any, to help us understand why the aggregates form and why paralysis happens," says Miller.

"If we understand why the protein is misfolding, it's possible to create drugs or develop techniques to rescue the protein before it misfolds," Gelfand says.

The video will load shortly

The scientists' work will continue at the National Synchrotron Light Source II at Brookhaven, using the nanoscale-size beams at the Submicron Resolution X-Ray Spectroscopy Beamline when it begins operation in 2015.

Explore further: The role of metal ions in amyotrophic lateral sclerosis

Related Stories

The role of metal ions in amyotrophic lateral sclerosis

March 10, 2011

(PhysOrg.com) -- Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, leading to muscle weakness, paralysis, and ...

Brain iron as an early predictor of Alzheimer's disease

June 17, 2011

Early and correct diagnosis of Alzheimer’s disease (AD) is important for reasons that go beyond treatment. These include more time to make critical life decisions, planning for future care, and maximizing the safety ...

High-speed X-ray 'camera' beamline taking shape at NSLS-II

November 21, 2013

(Phys.org) —"Phew!" Andrei Fluerasu breathes a sigh of relief as he looks over the plans for the beamline he has been building with a team of scientists, engineers and technicians at the National Synchrotron Light Source ...

Time-lapse movies from an infrared microscope

November 26, 2013

(Phys.org) —Infrared beams produced at facilities like the National Synchrotron Light Source represent the lower-energy part of the emitted light spectrum, yet are still much brighter than other sources, allowing scientists ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.