Zombie virus research could make vaccines last longer, be more available, save billions of dollars

Researchers at Portland State University (PSU) have found a way to preserve viruses in a glassy, dissolvable substance – a technique that could extend the shelf life of vaccines and allow for storage at room temperatures.

The discovery by PSU biology professor Ken Stedman and graduate student James Laidler shows that – which form the basis of many vaccines – can be covered with a silicate coating that keeps them in a state of suspended animation. The coating harmlessly melts away when it's ingested by or injected into a living host. Stedman nicknamed the process "zombification" because the "undead" viruses come back to life once the coating has been removed.

Vaccines are often extremely fragile and will spoil quickly if they're not stored at . Up to 50 percent of vaccines spoil due to inadequate refrigeration during transport. The new preservation technique could drastically reduce spoilage and allow for easier, more inexpensive transport and storage within the developing world.

"It's really hard to put a fridge on the back of a donkey," Stedman said. "This process has the potential to stabilize vaccines so that they can get to more places and more people more often. Six million people per year – mostly children – die from diseases that could be helped with vaccination." The process could save the pharmaceutical companies that make vaccines about $2.3 billion per year by cutting product losses, Stedman added. It would also reduce the cost of shipping and encourage the development of new markets.

Stedman and Laidler discovered "zombie" viruses while taking samples from bubbling in the American West. Silica from the hot springs protected the viruses from drying out, and allowed them to stay viable outside their natural environment. Their study, which was recently published in the Journal of Virology, was partially funded by NASA because the survivability of the viruses could give clues to the origins of life on earth and the possibility of life on other planets, Stedman said. He estimates another five to 10 years of research will be required before the technique can go into widespread use.

Related Stories

Glassy coating keeps viruses happy in harsh environments

date Nov 18, 2013

What's a virus to do when it finds itself in an inhospitable environment such as hot water? Coating itself in glass seems to not only provide protection, but may also make it easier to jump to a more favorable ...

Tracking viruses back in time

date Sep 06, 2010

How long have viruses been around? No one knows. Scientists at Portland State University have begun taking the first steps toward answering this question.

Astro-virology

date Nov 29, 2013

In HG Wells' 'The War of the Worlds', the invading Martians were beaten by that most unassuming of combatants – the common cold. Could the reverse happen and alien viruses pose a threat to human astronauts ...

Recommended for you

Bacteria play only a minor role stomach ulcers in cattle

date Apr 17, 2015

Scientists at the University of Veterinary Medicine Vienna investigated whether stomach ulcers in cattle are related to the presence of certain bacteria. For their study, they analysed bacteria present in ...

New research reveals how our skeleton is a lot like our brain

date Apr 17, 2015

Researchers from Monash University and St Vincent's Institute of Medical Research in Melbourne have used mathematical modelling combined with advanced imaging technology to calculate, for the first time, the number and connectivity ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.