Imaging technique shows brain anatomy change in women with multiple sclerosis, depression

A multicenter research team led by Cedars-Sinai neurologist Nancy Sicotte, MD, an expert in multiple sclerosis and state-of-the-art imaging techniques, used a new, automated technique to identify shrinkage of a mood-regulating brain structure in a large sample of women with MS who also have a certain type of depression.

In the study, women with MS and symptoms of "depressive affect" – such as depressed mood and loss of interest – were found to have reduced size of the right hippocampus. The left hippocampus remained unchanged, and other types of depression – such as vegetative depression, which can bring about extreme fatigue – did not correlate with hippocampal size reduction, according to an article featured on the cover of the January 2014 issue of Human Brain Mapping.

The research supports earlier studies suggesting that the hippocampus may contribute to the high frequency of depression in . It also shows that a computerized imaging technique called automated surface mesh modeling can readily detect thickness changes in subregions of the hippocampus. This previously required a labor-intensive manual analysis of MRI images.

Sicotte, the article's senior author, and others have previously found evidence of tissue loss in the , but the changes could only be documented in manual tracings of a series of special high-resolution MRI images. The new approach can use more easily obtainable MRI scans and it automates the brain mapping process.

"Patients with medical disorders – and especially those with inflammatory diseases such as MS – often suffer from depression, which can cause fatigue. But not all fatigue is caused by depression. We believe that while fatigue and depression often co-occur in patients with MS, they may be brought about by different biological mechanisms. Our studies are designed to help us better understand how MS-related differs from other types, improve diagnostic imaging systems to make them more widely available and efficient, and create better, more individualized treatments for our patients," said Sicotte, director of Cedars-Sinai's Multiple Sclerosis Program and the Neurology Residency Program. She received a $506,000 grant from the National Multiple Sclerosis Society last year to continue this research.

More information: Human Brain Mapping, "Detection of Altered Hippocampal Morphology in Multiple Sclerosis-Associated Depression Using Automated Surface Mesh Modeling." Cover of the January 2014 print edition.

add to favorites email to friend print save as pdf

Related Stories

Hippocampal volume loss in depression reflects glial loss

Dec 17, 2013

Depression has been associated with reduced volume of the hippocampus in magnetic resonance imaging studies in humans. A new study just published in Biological Psychiatry now clarifies the cellular basis of these volumetric change ...

Recommended for you

New ALS associated gene identified using innovative strategy

14 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

15 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

15 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

19 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

19 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments