Imaging technique shows brain anatomy change in women with multiple sclerosis, depression

January 31, 2014

A multicenter research team led by Cedars-Sinai neurologist Nancy Sicotte, MD, an expert in multiple sclerosis and state-of-the-art imaging techniques, used a new, automated technique to identify shrinkage of a mood-regulating brain structure in a large sample of women with MS who also have a certain type of depression.

In the study, women with MS and symptoms of "depressive affect" – such as depressed mood and loss of interest – were found to have reduced size of the right hippocampus. The left hippocampus remained unchanged, and other types of depression – such as vegetative depression, which can bring about extreme fatigue – did not correlate with hippocampal size reduction, according to an article featured on the cover of the January 2014 issue of Human Brain Mapping.

The research supports earlier studies suggesting that the hippocampus may contribute to the high frequency of depression in . It also shows that a computerized imaging technique called automated surface mesh modeling can readily detect thickness changes in subregions of the hippocampus. This previously required a labor-intensive manual analysis of MRI images.

Sicotte, the article's senior author, and others have previously found evidence of tissue loss in the , but the changes could only be documented in manual tracings of a series of special high-resolution MRI images. The new approach can use more easily obtainable MRI scans and it automates the brain mapping process.

"Patients with medical disorders – and especially those with inflammatory diseases such as MS – often suffer from depression, which can cause fatigue. But not all fatigue is caused by depression. We believe that while fatigue and depression often co-occur in patients with MS, they may be brought about by different biological mechanisms. Our studies are designed to help us better understand how MS-related differs from other types, improve diagnostic imaging systems to make them more widely available and efficient, and create better, more individualized treatments for our patients," said Sicotte, director of Cedars-Sinai's Multiple Sclerosis Program and the Neurology Residency Program. She received a $506,000 grant from the National Multiple Sclerosis Society last year to continue this research.

Explore further: Small hippocampus associated with depression in the elderly: Risk factor or shrinkage?

More information: Human Brain Mapping, "Detection of Altered Hippocampal Morphology in Multiple Sclerosis-Associated Depression Using Automated Surface Mesh Modeling." Cover of the January 2014 print edition.

Related Stories

Hippocampal volume loss in depression reflects glial loss

December 17, 2013

Depression has been associated with reduced volume of the hippocampus in magnetic resonance imaging studies in humans. A new study just published in Biological Psychiatry now clarifies the cellular basis of these volumetric ...

Modest familial risks for multiple sclerosis

January 22, 2014

Even though multiple sclerosis is largely caused by genetic factors, the risk of patients relatives developing the disease is lower than previously assumed. This is the conclusion of a new population registry-based study, ...

Recommended for you

Action recognition without mirror neurons

April 29, 2016

When someone stands opposite us and purposefully raises their arm to make some kind of movement, our brain asks itself whether they intend to attack us or, perhaps, simply greet us. Scientists from the Department of Human ...

Subtle chemical changes in brain can alter sleep-wake cycle

April 28, 2016

A study out today in the journal Science sheds new light on the biological mechanisms that control the sleep-wake cycle. Specifically, it shows that a simple shift in the balance of chemicals found in the fluid that bathes ...

Turn left! How myosin-Va helps direct neuron growth

April 28, 2016

Researchers at the RIKEN Brain Science Institute in Japan have discovered a protein complex that helps direct the growth of axons—the parts of neurons that make up our nerves, connecting our senses and muscles to the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.