Opioid abuse initiates specific protein interactions in neurons in brain's reward system

Identifying the specific pathways that promote opioid addiction, pain relief, and tolerance are crucial for developing more effective and less dangerous analgesics, as well as developing new treatments for addiction. Now, new research from the Icahn School of Medicine at Mount Sinai reveals that opiate use alters the activity of a specific protein needed for the normal functioning of the brain's reward center.

Investigators were able to block the protein, as well as increase its expression in the mouse nucleus accumbens, a key component of the brain's reward center. It altered the actions of opioids like morphine dramatically. The preclinical study, published online Feb. 24 in the journal Neuropsychopharmacology, is the first to show that opioid use changes activity of the protein RGS9-2 and alters both the threshold for and affects opioid tolerance.

"We were able to block addiction-related behaviors, but increasing the activity of the protein also lowered the pain relief response to morphine, and mice developed morphine tolerance much more quickly," said the study's senior researcher, Venetia Zachariou, PhD, Associate Professor, Fishberg Department of Neuroscience, Friedman Brain Institute, Department of Pharmacology and Systems Therapeutics, at the Icahn School of Medicine at Mount Sinai.

Dr. Zachariou explained that because the brain's reward center has such a strong impact on analgesic responses, non-opioid medications should be used for the treatment of severe chronic pain conditions. Pain specialists have several alternatives for the treatment of chronic pain. For patients that are already addicted to opioids, "an alternative pain medication could offer more analgesic relief without the adverse effects of opioids." Additionally, with this research in hand, the research team points out that targeting this molecule may eventually lead to a novel treatment for addiction."

In the study, investigators used a novel technique known as optogenetics, which allows the activation of specific neurons via blue light in real time, to determine the exact cell types of the brain reward center responsible for the reduced analgesic response.

"In our earlier work, by inactivating RGS9-2, we saw a tenfold increase in sensitivity to the rewarding actions of morphine, severe morphine dependence, a better analgesic response, and delayed development of tolerance," said the study's senior author. While opiate analgesics act in several brain regions to alleviate pain, their actions in the brain may also affect analgesia. The nucleus accumbens may also affect the development of , via mechanism that are distinct from those described in other regions of the brain.

Eric Nestler, MD, PhD, Nash Family Professor of Neuroscience, Icahn School of Medicine at Mount Sinai, praised the research. "These discoveries provide important new information about the role of the pathway in the analgesic responses to opiates".

add to favorites email to friend print save as pdf

Related Stories

Promising new drug targets for cocaine addiction found

Jan 20, 2014

Researchers from the Icahn School of Medicine at Mount Sinai have identified a new molecular mechanism by which cocaine alters the brain's reward circuits and causes addiction. Published online in the journal Proceedings of ...

Missing enzyme linked to drug addiction

Jun 17, 2013

A missing brain enzyme increases concentrations of a protein related to pain-killer addiction, according to an animal study. The results will be presented Monday at The Endocrine Society's 95th Annual Meeting in San Francisco.

Recommended for you

Why your favourite song takes you down memory lane

21 hours ago

Music triggers different functions of the brain, which helps explain why listening to a song you like might be enjoyable but a favourite song may plunge you into nostalgia, scientists said on Thursday.

Transcranial Magnetic Stimulation of brain boosts memory

22 hours ago

Stimulating a particular region in the brain via non-invasive delivery of electrical current using magnetic pulses, called Transcranial Magnetic Stimulation, improves memory, reports a new Northwestern Medicine ...

User comments