Promising new drug targets for cocaine addiction found

January 20, 2014, The Mount Sinai Hospital

Researchers from the Icahn School of Medicine at Mount Sinai have identified a new molecular mechanism by which cocaine alters the brain's reward circuits and causes addiction. Published online in the journal Proceedings of the National Academy of Sciences by Dr. Eric J. Nestler, MD, PhD, and colleagues, the preclinical research reveals how an abundant enzyme and synaptic gene affect a key reward circuit in the brain, changing the ways genes are expressed in the nucleus accumbens. The DNA itself does not change, but its "mark" activates or represses certain genes encoding synaptic proteins within the DNA. The marks indicate epigenetic changes—changes made by enzymes—that alter the activity of the nucleus accumbens.

In a mouse model, the research team found that chronic cocaine administration increased levels of an enzyme called PARP-1 or poly(ADP-ribosyl)ation polymerase-1. This increase in PARP-1 leads to an increase in its PAR marks at genes in the , contributing to long-term cocaine addiction. Although this is the first time PARP-1 has been linked to cocaine addiction, PARP-1 has been under investigation for cancer treatment.

"This discovery provides new leads for the development of anti-addiction medications," said the study's senior author, Eric Nestler, MD, PhD, Nash Family Professor of Neuroscience and Director of the Friedman Brain Institute, at the Icahn School of Medicine at Mount Sinai. Dr. Nestler said that the research team is using PARP to identify other proteins regulated by cocaine. PARP inhibitors may also prove valuable in changing cocaine's addictive power.

Kimberly Scobie, PhD, the lead investigator and postdoctoral fellow in Dr. Nestler's laboratory, underscored the value of implicating PARP-1 in mediating the brain's reward center. "It is striking that changing the level of PARP-1 alone is sufficient to influence the rewarding effects of cocaine," she said.

Next, the investigators used chromatin immunoprecipitation sequencing to identify which genes are altered through the epigenetic changes induced by PARP-1. One target gene whose expression changed after chronic cocaine use was sidekick-1, a cell adhesion molecule concentrated at synapses that directs . Sidekick-1 has not been studied to date in the brain, nor has it been studied in relation to cocaine exposure. Using viral mediated gene transfer to overexpress sidekick-1 in the nucleus accumbens, investigators saw that this overexpression alone not only increased the rewarding effects of cocaine, but it also induced changes in the morphology and synaptic connections of neurons in this brain reward region.

The research opens the door to a brand new direction for therapeutics to treat . Effective drug therapies are urgently needed. National data from the US National Institute of Drug Abuse reveal that nearly 1.4 million Americans meet criteria for dependence or abuse of .

Explore further: Silencing synapses: Hope for a pharmacological solution to cocaine addiction

More information: Essential role of poly(ADP-ribosyl)ation in cocaine action, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1319703111

Related Stories

Silencing synapses: Hope for a pharmacological solution to cocaine addiction

December 17, 2013
Imagine kicking a cocaine addiction by simply popping a pill that alters the way your brain processes chemical addiction. New research from the University of Pittsburgh suggests that a method of biologically manipulating ...

Cocaine decreases activity of a protein necessary for normal functioning of the brain's reward system

April 22, 2012
New research from Mount Sinai Medical Center in New York reveals that repeated exposure to cocaine decreases the activity of a protein necessary for normal functioning of the brain's reward system, thus enhancing the reward ...

Sons of cocaine-using fathers may resist addiction to drug, study suggests

November 11, 2013
A father's cocaine use may make his sons less sensitive to the drug and thereby more likely to resist addictive behaviors, suggests new findings from an animal study presented by Penn Medicine researchers at Neuroscience ...

How the brain puts the brakes on the negative impact of cocaine

January 11, 2012
Research published by Cell Press in the January 12 issue of the journal Neuron provides fascinating insight into a newly discovered brain mechanism that limits the rewarding impact of cocaine. The study describes protective ...

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.