Cocaine decreases activity of a protein necessary for normal functioning of the brain's reward system

April 22, 2012, The Mount Sinai Hospital / Mount Sinai School of Medicine

New research from Mount Sinai Medical Center in New York reveals that repeated exposure to cocaine decreases the activity of a protein necessary for normal functioning of the brain's reward system, thus enhancing the reward for cocaine use, which leads to addiction. Investigators were also able to block the ability of repeated cocaine exposure, to induce addiction. The findings, published online April 22 in the journal Nature Neuroscience, provide the first evidence of how cocaine changes the shape and size of neuron rewards in a mouse model.

Repeated exposure to cocaine decreases the expression of a protein necessary for normal functioning of the brain's reward system, thus enhancing the reward for and stimulating addiction. Using the protein's light-activated form in real time, in a technique known as optogenetics, investigators were also able to block repeated from enhancing the brain's reward center from cocaine. Even though the results are very early and many steps will be important in moving from mice to humans, the researchers say that the finding opens the door to a new direction for treatment for .

"There are virtually no medication regimens for cocaine addiction, only psychotherapy, and some early work with vaccines," said the study's senior investigator, Eric Nestler, MD, PhD, Nash Family Professor of Neuroscience, Chairman of the Neuroscience and Director of the Friedman Brain Institute at Mount Sinai School of Medicine. The protein, Rac1, is found in many cells in mice, rats, monkeys, and humans, and it is known to be involved in controlling the growth of nerve cells.

Investigators "knocked out," or deleted, the gene responsible for Rac1 production, or injected a virus to enhance expression of Rac1.

"The research gives us new information on how cocaine affects the brain's and how it could potentially be repaired," said Dr. Nestler. "This is the first case in the brain in vivo where it's been possible to control the activity of a protein, inside in real time. Our findings reveal new pathways and target -- a proof of principle study really -- for treatment of cocaine addiction."

Explore further: How the brain puts the brakes on the negative impact of cocaine

Related Stories

How the brain puts the brakes on the negative impact of cocaine

January 11, 2012
Research published by Cell Press in the January 12 issue of the journal Neuron provides fascinating insight into a newly discovered brain mechanism that limits the rewarding impact of cocaine. The study describes protective ...

Abnormal brain structure linked to chronic cocaine abuse

June 21, 2011
Researchers at the University of Cambridge have identified abnormal brain structures in the frontal lobe of cocaine users' brains which are linked to their compulsive cocaine-using behaviour. Their findings were published ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.