New mechanism underlying cocaine addiction discovered

January 7, 2010

Researchers have identified a key epigenetic mechanism in the brain that helps explain cocaine's addictiveness, according to research funded by the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health.

The study, published in the January issue of the journal Science, shows how cocaine affects an epigenetic process (a process capable of influencing without changing a gene's sequence) called histone methylation. These epigenetic changes in the brain's pleasure circuits, which are also the first impacted by chronic cocaine exposure, likely contribute to an acquired preference for cocaine.

"This fundamental discovery advances our understanding of how works," said NIDA Director Dr. Nora D. Volkow. "Although more research will be required, these findings have identified a key new player in the molecular cascade triggered by repeated cocaine exposure, and thus a potential novel target for the development of addiction medications."

Researchers gave one group of young mice repeated doses of cocaine and another group repeated doses of saline with a final dose of cocaine to determine how the effects of chronic differed from one-time exposure. The study confirms that one of the mechanisms by which cocaine alters the reward pathway is by repressing G9A, a histone demethylating enzyme that plays a critical role in epigenetic control of gene expression.

As previously observed, animals exposed to chronic cocaine displayed dramatic alterations in gene expression as well as a strong preference for cocaine. For the first time, the authors were also able to show that by experimentally reversing the cocaine induced repression of G9a, they could block the changes in gene expression and inhibit the enhanced preference for cocaine.

"The more complete picture that we have today of the genetic and epigenetic processes triggered by chronic cocaine give us a better understanding of the broader principles governing biochemical regulation in the brain which will help us identify not only additional pathways involved but potentially new therapeutic approaches," said Dr. Eric J. Nestler, study investigator and director of the Brain Institute at Mount Sinai School of Medicine.

Related Stories

Recommended for you

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

A new compound targets energy generation, thereby killing metastatic cells

October 17, 2017
Cancer can most often be successfully treated when confined to one organ. But a greater challenge lies in treating cancer that has metastasized, or spread, from the primary tumor throughout the patient's body. Although immunotherapy ...

Research finds that zinc binding is vital for regulating pH levels in the brain

October 17, 2017
Researchers in Oslo, Norway, have discovered that zinc binding plays an important role in the sensing and regulation of pH in the human brain. The findings come as one of the first studies that directly link zinc binding ...

Researchers find factor that delays wound healing

October 17, 2017
New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.