Researchers reveal the dual role of brain glycogen

Researchers reveal the dual role of brain glycogen
Neurons accumulate glycogen in small amounts, which is beneficial for them. Glycogen synthase is shown in green, and glycogen accumulation is shown in red. Credit: Isabel Sáez, Institute for Research in Biomedicine

In 2007, in an article published in Nature Neuroscience, scientists at the Institute for Research in Biomedicine (IRB Barcelona) headed by Joan Guinovart, an authority on glycogen metabolism, reported that in Lafora Disease (LD), a rare and fatal neurodegenerative condition that affects adolescents, neurons die as a result of the accumulation of glycogen—chains of glucose. They went on to propose that this accumulation is the root cause of this disease.

The breakthrough of this paper was two-sided: first, the researchers established a possible cause of LD and therefore were able to point to a plausible therapeutic target, and second, they discovered that neurons have the capacity to store glycogen—an observation that had never been made—and that this accumulation was toxic.

Some scientists sceptical about the article upheld that the glycogen deposits were not cause by the neurodegeneration but were a consequence of another, more important, cell imbalance, such as a down deregulation of autophagy—the cell recycling and cleaning programme. In several articles, Guinovart's "Metabolic engineering and diabetes therapy" group has recently brought to light evidence of the toxicity of glycogen deposits for LD patients, and has now provided irrefutable data.

In an article published at the beginning of February in Human Molecular Genetics, with the associate researcher Jordi Duran as first author, the scientists show that in LD the accumulation of glycogen directly causes neuronal death and triggers cell imbalances such a decrease in autophagy and synaptic failure. All these alterations lead to the symptoms of LD, such as epilepsy.

Glycogen, a Trojan horse for neurons?

There was still a greater mystery to be solved. Was glycogen synthase truly a Trojan horse for neurons, as apparently established in the article in Nature Neuroscience? That is to say, was the accumulation of glycogen always fatal for cells, thus explaining why their glycogen synthesis machinery is silenced? The inevitable question was then why these cells had such machinery.

In another paper published in Journal of Cerebral Blood Flow & Metabolism, part of the Nature Group, the researchers provided the first evidence that neurons constantly store glycogen but in a different way: accumulating small amounts and using it as quickly as it becomes available. In this regard, the scientists set up new, more sensitive, analytical techniques to confirm that the machinery responsible for glycogen synthesis and degradation existed. In summary, they showed that, in small amounts, glycogen is beneficial for neurons.

"For example, while the liver accumulates glycogen in large amounts and releases it slowly to maintain blood sugar levels, above all when we sleep, neurons synthesize and degrade small amounts of this polysaccharide continuously. They do not use it as an energy store but as a rapid and small, but constant, source of energy," explains Guinovart, also senior professor at the University of Barcelona (UB).

To observe the action of glycogen, the scientists forced cultured mouse neurons to survive under oxygen depletion. They demonstrated that the first cells to die were those in which the capacity to synthesise glycogen had been removed. The same experiments were performed in collaboration with Marco Milán's "Development and growth control" group in the in vivo model of the fruit fly Drosophila melanogaster. These tests led to the same conclusions.

The researchers postulated that glycogen is a lifeguard under oxygen depletion, a condition that leads the brains to shut down and that often occurs at birth and in cerebral infarctions in adults, which leads to severe consequences, such a cerebral paralysis.

"It is the first function of glycogen that we have discovered in neurons, but we still have to identify its function in normal conditions and establish how the mechanism works," says Jordi Duran. Postdoctoral researcher Isabel Saez is the first author of the article out today, which involved the collaboration of ICREA Research Professor Marco Milán's lab.

The beneficial and toxic roles of brain are currently the focus of main research lines conducted by Joan Guinovart's lab.

More information: Human Molecular Genetics (2014 )1–10. AOP 4 february, DOI: 10.1093/hmg/ddu024
Nature NeuroScience (2007) DOI: 10.1038/nn1998) (2007

add to favorites email to friend print save as pdf

Related Stories

Mouse model brings new perspectives on Lafora disease

Aug 29, 2011

Short-term energy storage in animal cells is usually achieved through the accumulation of glucose, in the form of long and branched chains, known as glycogen. But when this accumulation happens in neurons it is fatal, causing ...

Answers to a rare and tragic form of epilepsy

Mar 01, 2011

A new study offers critical insight into the biochemistry of a rare and fatal form of epilepsy known as Lafora disease, a genetic condition that typically strikes children in their teens. The disease is characterized ...

Genetic variant impairs glycogen synthesis

Jan 29, 2008

Glycogen is stored in skeletal muscles and liver and is of central importance as a first source of energy for muscle contractions, especially during high intensity exercise. Human genetic disorders primarily affecting skeletal ...

Recommended for you

Cell death proteins key to fighting disease

8 hours ago

Melbourne researchers have uncovered key steps involved in programmed cell death, offering new targets for the treatment of diseases including lupus, cancers and neurodegenerative diseases.

Unlocking the secrets of pulmonary hypertension

Oct 30, 2014

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.