Glycogen accumulation in neurons causes brain damage and shortens the lives of flies and mice

May 2, 2012, Institute for Research in Biomedicine (IRB Barcelona)
This image shows a cerebellum sample from a healthy mouse. Credit: Jordi Duran (IRB Barcelona)

Collaborative research by groups headed by scientists Joan J. Guinovart and Marco Milán at the Institute for Research in Biomedicine (IRB Barcelona) has revealed conclusive evidence about the harmful effects of the accumulation of glucose chains (glycogen) in fly and mouse neurons.

These two animal models will allow scientists to address the genes involved in this harmful process and to find pharmacological solutions that allow disintegration of the accumulations or limitation of production. Advances in this direction would make a significant contribution to investigation into Lafora progressive myoclonic epilepsy and other neurodegenerative diseases characterized by glycogen accumulation in . The journal EMBO Molecular Medicine publishes the results of the study this week.

This image shows the same tissue (mouse cerebellum) after glycogen accumulation. Credit: Jordi Duran (IRB Barcelona)

"Our data clearly indicate that glycogen accumulation alone kills neurons and thus dramatically reduces lifespan", explains Guinovart, an expert in glycogen metabolism, group leader at IRB Barcelona, and senior professor at the University of Barcelona, "because the only thing we have manipulated in the neurons is their capacity to produce glycogen".

The inclusion of the Drosophila fly in the study provides in vivo confirmation of the theory in another animal model as these flies also show the same symptoms of degeneration as mice when glycogen accumulates in neurons. However, in addition the use of Drosophila will speed up obtaining genetic data and the screening of therapeutic molecules. "In a short time we will be able to perform a massive search for genes involved in the pathological process and to understand it better at the molecular level", emphasizes Marco Milán, ICREA researcher at IRB Barcelona and a specialist in Drosophila. "But the flies will also be useful to identify pharmacological molecules that can cure", he explains.

The IRB Barcelona teams are designing several experiments to identify the possible therapeutic targets that may be useful to prevent glycogen accumulation in neurons. In addition to the direct relation to Lafora epilepsy, a progressive degenerative disease that affects adolescents and has no cure, glycogen accumulation could be the main cause of other neurodegenerative illnesses such as Adult polyglucosan body disease and Andersen's disease.

Explore further: Mouse model brings new perspectives on Lafora disease

Related Stories

Mouse model brings new perspectives on Lafora disease

August 29, 2011
Short-term energy storage in animal cells is usually achieved through the accumulation of glucose, in the form of long and branched chains, known as glycogen. But when this accumulation happens in neurons it is fatal, causing ...

Researchers validate the potential of a protein for the treatment of type 2 diabetes

March 23, 2012
Researchers at the Institute for Research in Biomedicine (IRB Barcelona, Spain)) have discovered that deficiency of a single protein, Mitofusin 2, in muscle and hepatic cells of mice is sufficient to cause tissues to become ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.