Glycogen accumulation in neurons causes brain damage and shortens the lives of flies and mice

May 2, 2012
This image shows a cerebellum sample from a healthy mouse. Credit: Jordi Duran (IRB Barcelona)

Collaborative research by groups headed by scientists Joan J. Guinovart and Marco Milán at the Institute for Research in Biomedicine (IRB Barcelona) has revealed conclusive evidence about the harmful effects of the accumulation of glucose chains (glycogen) in fly and mouse neurons.

These two animal models will allow scientists to address the genes involved in this harmful process and to find pharmacological solutions that allow disintegration of the accumulations or limitation of production. Advances in this direction would make a significant contribution to investigation into Lafora progressive myoclonic epilepsy and other neurodegenerative diseases characterized by glycogen accumulation in . The journal EMBO Molecular Medicine publishes the results of the study this week.

This image shows the same tissue (mouse cerebellum) after glycogen accumulation. Credit: Jordi Duran (IRB Barcelona)

"Our data clearly indicate that glycogen accumulation alone kills neurons and thus dramatically reduces lifespan", explains Guinovart, an expert in glycogen metabolism, group leader at IRB Barcelona, and senior professor at the University of Barcelona, "because the only thing we have manipulated in the neurons is their capacity to produce glycogen".

The inclusion of the Drosophila fly in the study provides in vivo confirmation of the theory in another animal model as these flies also show the same symptoms of degeneration as mice when glycogen accumulates in neurons. However, in addition the use of Drosophila will speed up obtaining genetic data and the screening of therapeutic molecules. "In a short time we will be able to perform a massive search for genes involved in the pathological process and to understand it better at the molecular level", emphasizes Marco Milán, ICREA researcher at IRB Barcelona and a specialist in Drosophila. "But the flies will also be useful to identify pharmacological molecules that can cure", he explains.

The IRB Barcelona teams are designing several experiments to identify the possible therapeutic targets that may be useful to prevent glycogen accumulation in neurons. In addition to the direct relation to Lafora epilepsy, a progressive degenerative disease that affects adolescents and has no cure, glycogen accumulation could be the main cause of other neurodegenerative illnesses such as Adult polyglucosan body disease and Andersen's disease.

Explore further: Mouse model brings new perspectives on Lafora disease

Related Stories

Mouse model brings new perspectives on Lafora disease

August 29, 2011
Short-term energy storage in animal cells is usually achieved through the accumulation of glucose, in the form of long and branched chains, known as glycogen. But when this accumulation happens in neurons it is fatal, causing ...

Researchers validate the potential of a protein for the treatment of type 2 diabetes

March 23, 2012
Researchers at the Institute for Research in Biomedicine (IRB Barcelona, Spain)) have discovered that deficiency of a single protein, Mitofusin 2, in muscle and hepatic cells of mice is sufficient to cause tissues to become ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.