Replacing insulin through stem cell-derived pancreatic cells under the skin

Sanford-Burnham Medical Research Institute and UC San Diego School of Medicine scientists have shown that by encapsulating immature pancreatic cells derived from human embryonic stem cells (hESC), and implanting them under the skin in animal models of diabetes, sufficient insulin is produced to maintain glucose levels without unwanted potential trade-offs of the technology. The research suggests that encapsulated hESC-derived insulin-producing cells hold great promise as an effective and safe cell-replacement therapy for insulin-dependent diabetes.

"Our study critically evaluates some of the potential pitfalls of using stem to treat insulin-dependent diabetes," said Pamela Itkin-Ansari, Ph.D., adjunct assistant professor in the Development, Aging, and Regenerative Program at Sanford-Burnham, with a joint appointment at UC San Diego.

"We have shown that encapsulated hESC-derived are able to produce insulin in response to elevated glucose without an increase in the mass or their escape from the capsule. These results are important because it means that the encapsulated cells are both fully functional and retrievable," said Itkin-Ansari.

In the study, published online in Stem Cell Research, Itkin-Ansari and her team used bioluminescent imaging to see if encapsulated cells stay in the capsule after implantation.

Previous attempts to replace insulin-producing cells, called , have met with significant challenges. For example, researchers have tried treating diabetics with mature beta cells, but because are fragile and scarce, the method is fraught with problems. Moreover, since the cells come from organ donors, they may be recognized as foreign by the recipient's immune system—requiring patients to take immunosuppressive drugs to prevent their immune system from attacking the donor's cells, ultimately leaving patients vulnerable to infections, tumors, and other adverse events.

Encapsulation technology was developed to protect from exposure to the immune system—and has proven extremely successful in preclinical studies.

Itkin-Ansari and her research team previously made an important contribution to the encapsulation approach by showing that pancreatic islet progenitor cells are an optimal cell type for encapsulation. They found that progenitor cells were more robust than mature beta cells to encapsulate, and while encapsulated, they matured into insulin-producing cells, which secreted insulin only when needed.

"We were thrilled to see that the cells remained fully encapsulated for up to 150 days, the longest period tested, said Itkin-Ansari. "Equally important is that we show that the develop glucose responsiveness without a significant change in mass—meaning they don't outgrow their capsule.

"Next steps for the development of the approach will be to figure out the size of the capsule required to house the number of progenitor beta cells needed to respond to glucose in humans. And of course we want to learn how long a capsule will function once implanted. Given these goals and continued successful results, I expect to see the technology become a treatment option for patients with insulin-dependent diabetes," said Itkin-Ansari.

add to favorites email to friend print save as pdf

Related Stories

Stem cell research uncovers mechanism for type 2 diabetes

Feb 12, 2009

Taking clues from their stem cell research, investigators at the University of California San Diego (UC San Diego) and Burnham Institute for Medical Research (Burnham) have discovered that a signaling pathway involved in ...

Recommended for you

Student seeks to improve pneumonia vaccines

18 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

20 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments