Researcher invents 'mini heart' to help return venous blood (w/ Video)

March 27, 2014

George Washington University (GW) researcher Narine Sarvazyan, Ph.D., has invented a new organ to help return blood flow from veins lacking functional valves. A rhythmically contracting cuff made of cardiac muscle cells surrounds the vein acting as a 'mini heart' to aid blood flow through venous segments. The cuff can be made of a patient's own adult stem cells, eliminating the chance of implant rejection.

"We are suggesting, for the first time, to use to create, rather than just repair damaged organs," said Sarvazyan, professor of pharmacology and physiology at the GW School of Medicine and Health Sciences. "We can make a new heart outside of one's own heart, and by placing it in the lower extremities, significantly improve venous ."

The novel approach of creating 'mini hearts' may help to solve a chronic widespread disease. Chronic venous insufficiency is one of the most pervasive diseases, particularly in developed countries. Its incidence can reach 20 to 30 percent in people over 50 years of age. It is also responsible for about 2 percent of health care costs in the United States. Additionally, sluggish venous blood flow is an issue for those with diseases such as diabetes, and for those with paralysis or recovering from surgery.

The video will load shortly
Narine Sarvazyan, Ph.D., professor of pharmacology and physiology at the George Washington University School of Medicine and Health Sciences, has invented a new organ to help return blood flow from veins lacking functional valves. A rhythmically contracting cuff made of cardiac muscle cells surrounds the vein acting as a 'mini heart' to aid blood flow through venous segments. The cuff can be made of a patient's own adult stem cells, eliminating the chance of implant rejection. Credit: George Washington University School of Medicine and Health Sciences

This potential new treatment option, outlined in a recently published paper in the Journal of Cardiovascular Pharmacology and Therapeutics, represents a leap for the tissue engineering field, advancing from organ repair to organ creation. Sarvazyan, together with members of her team, has demonstrated the feasibility of this novel approach in vitro and is currently working toward testing these devices in vivo.

Explore further: Blood pressure cuff may save lives in patients with acute heart attack

More information: The study, titled "Thinking Outside the Heart: Use of Engineered Cardiac Tissue for the Treatment of Chronic Deep Venous Insufficiency," is available at cpt.sagepub.com/content/early/2014/01/20/1074248413520343.full

Related Stories

Building heart tissue that beats

March 18, 2014

When a heart gets damaged, such as during a major heart attack, there's no easy fix. But scientists working on a way to repair the vital organ have now engineered tissue that closely mimics natural heart muscle that beats, ...

Recommended for you

Female smokers face greatest risk for brain bleeds

July 21, 2016

Bleeding inside the lining of the brain (subarachnoid hemorrhage) is significantly more common among smokers, especially female smokers, than among people who do not smoke, according to new research in the American Heart ...

Global study shows stroke largely preventable

July 15, 2016

Ten risk factors that can be modified are responsible for nine of 10 strokes worldwide, but the ranking of those factors vary regionally, says a study led by researchers of the Population Health Research Institute (PHRI) ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.