Criminal profiling technique targets killer diseases

This contour map shows the number of cases in Cairo, Egypt. The observed data points are shown as red circles, while the empirically identified sources are shown as blue dots.

A mathematical tool used by the Metropolitan Police and FBI has been adapted by researchers at Queen Mary University of London to help control outbreaks of malaria, and has the potential to target other infectious diseases.

In cases of serial crime such as murder or rape, police typically have too many suspects to consider, for example, the Yorkshire Ripper investigation in the UK generated a total of 268,000 names. To help prioritise these investigations, police forces around the world use a technique called geographic profiling, which uses the spatial locations of the crimes to make inferences about the criminal's likely anchor point – usually a home or workplace.

Writing in the journal Methods in Ecology and Evolution, the team has shown how the maths that underpins can be adapted to target the control of , including malaria. Using data from an outbreak in Cairo, the scientists show how the new model could use the addresses of patients with malaria to locate the breeding sites of the mosquitoes that transmit the disease.

"The experts working in the field had to search almost 300 square km to find seven breeding sites, but our model found the same sites after searching just two thirds of this area," said Dr Steve Le Comber, a senior lecturer at QMUL's School of Biological and Chemical Sciences.

"In fact our model found five of the seven sites after searching just 10.7 square km. This is potentially important since there is a lot of evidence suggesting that the best way to control outbreaks of is to attack the mosquito – but it is incredibly difficult to do in practice."

The mathematical approach takes just minutes on a computer, meaning that the method could be used in the early stages of epidemics, when control efforts are most likely to be effective – potentially stopping outbreaks before they spread.

Dr Le Comber added: "The model has potential to identify the source of other infectious diseases as well, and we're now working with public health bodies to develop it further for use with TB, cholera and Legionnaires' disease."

More information: Verity, R., Stevenson, M. D., Rossmo, D. K., Nichols, R. A., Le Comber, S. C. (2014), "Spatial targeting of infectious disease control: identifying multiple, unknown sources." Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.12190

add to favorites email to friend print save as pdf

Related Stories

The buzz of the chase

Jul 30, 2008

Scientists from Queen Mary, University of London are helping to perfect a technique used to catch serial killers, by testing it on bumblebees.

Recommended for you

Where Ebola battles are won

1 hour ago

(HealthDay)—Four hospitals that are home to advanced biocontainment facilities have become America's ground zero in the treatment of Ebola patients.

Depression tied to worse lumbar spine surgery outcomes

3 hours ago

(HealthDay)—Depressive symptoms are associated with poorer long-term outcome in patients undergoing surgery for lumbar spinal stenosis (LSS), according to research published in the Oct. 1 issue of The Sp ...

Ebola death toll edging to 4,900 mark: WHO

4 hours ago

The death toll in the world's worst-ever Ebola outbreak has edged closer to 4,900, while almost 10,000 people have now been infected, new figures from the World Health Organization showed Wednesday.

US to track everyone coming from Ebola nations

4 hours ago

U.S. authorities said Wednesday that everyone traveling into the U.S. from Ebola-stricken nations will be monitored for symptoms for 21 days. That includes returning American aid workers, federal health employees ...

User comments