Criminal profiling technique targets killer diseases

This contour map shows the number of cases in Cairo, Egypt. The observed data points are shown as red circles, while the empirically identified sources are shown as blue dots.

A mathematical tool used by the Metropolitan Police and FBI has been adapted by researchers at Queen Mary University of London to help control outbreaks of malaria, and has the potential to target other infectious diseases.

In cases of serial crime such as murder or rape, police typically have too many suspects to consider, for example, the Yorkshire Ripper investigation in the UK generated a total of 268,000 names. To help prioritise these investigations, police forces around the world use a technique called geographic profiling, which uses the spatial locations of the crimes to make inferences about the criminal's likely anchor point – usually a home or workplace.

Writing in the journal Methods in Ecology and Evolution, the team has shown how the maths that underpins can be adapted to target the control of , including malaria. Using data from an outbreak in Cairo, the scientists show how the new model could use the addresses of patients with malaria to locate the breeding sites of the mosquitoes that transmit the disease.

"The experts working in the field had to search almost 300 square km to find seven breeding sites, but our model found the same sites after searching just two thirds of this area," said Dr Steve Le Comber, a senior lecturer at QMUL's School of Biological and Chemical Sciences.

"In fact our model found five of the seven sites after searching just 10.7 square km. This is potentially important since there is a lot of evidence suggesting that the best way to control outbreaks of is to attack the mosquito – but it is incredibly difficult to do in practice."

The mathematical approach takes just minutes on a computer, meaning that the method could be used in the early stages of epidemics, when control efforts are most likely to be effective – potentially stopping outbreaks before they spread.

Dr Le Comber added: "The model has potential to identify the source of other infectious diseases as well, and we're now working with public health bodies to develop it further for use with TB, cholera and Legionnaires' disease."

More information: Verity, R., Stevenson, M. D., Rossmo, D. K., Nichols, R. A., Le Comber, S. C. (2014), "Spatial targeting of infectious disease control: identifying multiple, unknown sources." Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.12190

add to favorites email to friend print save as pdf

Related Stories

The buzz of the chase

Jul 30, 2008

Scientists from Queen Mary, University of London are helping to perfect a technique used to catch serial killers, by testing it on bumblebees.

Recommended for you

Fatigue, fear are daily lot of Ebola fighters: experts

47 minutes ago

Doctors, nurses and hospital workers fighting the Ebola epidemic in west Africa are struggling with a daily burden of exhaustion, shortage of staff and fear for themselves over the deadly virus, specialists say.

Hong Kong makes Ebola 'contingency' measures

3 hours ago

Hong Kong said Wednesday it was quarantining all people from Guinea, Sierra Leone and Liberia who were showing Ebola-like symptoms on arrival in the city, as fears grow worldwide about the spread of the deadly virus.

EU ready for Ebola threat: sources

6 hours ago

The European Union is equipped and ready to treat victims should the deadly Ebola virus, which has killed hundreds in West Africa, be found in member states, EU sources said Wednesday.

Reducing kidney injury using a quality improvement method

11 hours ago

Using quality improvement measures in eight of the 10 hospitals in the Northern New England Cardiovascular Disease Study Group, researchers have found a way to reduce kidney injury in patients undergoing a procedure with ...

App for headache sufferers shows success

23 hours ago

A unique app that helps headache sufferers to record the severity and regularity of their pain is being used as part of a Griffith research study.

User comments