Battle of the bulge occurs in the liver

(Medical Xpress)—An international team of scientists led by Monash University researchers has shown how free radicals contribute to type 2 diabetes, obesity and fatty liver disease.

Type 2 diabetes and non-alcoholic fatty liver disease are key complications of obesity as 80 per cent of patients with are obese, and 75 per cent of patients who are obese or have type 2 diabetes also have fatty liver disease.

The team, led by Professor Tony Tiganis from the Department of Biochemistry and Molecular Biology at Monash, has found that free radical molecules called Reactive Oxygen Species (ROS) wage a battle with enzymes called protein tyrosine phosphatases, initiating a cascade of events with devastating consequences.

The findings, published today in the prestigious journal Cell Metabolism, explain how selective insulin resistance – a pathological feature of type 2 diabetes – occurs in the liver. The study identifies the molecular culprits involved, and reveals how they contribute to disease progression.

"We have shown for the very first time that these inactivate protein tyrosine phosphatases in the liver to activate rogue pathways that promote fatty liver disease and exacerbate the development of obesity and type 2 ," Professor Tiganis said.

Professor Tiganis' team found in lab studies that obesity promoted ROS generation that inactivated a phosphatase called PTPN2. This inactivation in turn exacerbated obesity and fatty progression.

While there is more work to be done to understand the causes of , Professor Tiganis has plans to test two potential therapeutic approaches. One involves inactivating a protein in the liver, and the other will use a selective anti-oxidant to 'mop up' excess free radicals that would otherwise inactivate PTPN2.

While free radicals play important roles in disease, Professor Tiganis advises against taking anti-oxidants indiscriminately.

"Although we need to undertake further studies in humans, preclinical studies indicate that ROS also play important roles in biology," he said.

add to favorites email to friend print save as pdf

Related Stories

Protein maybe key to halting obesity related disease

Jan 24, 2014

(Medical Xpress)—Australians are getting more obese and developing a disease called non-alcoholic fatty liver disease – a disease similar to that that results in cirrhosis in alcoholics and can be a precursor ...

Study reverses current thought on treatment of cirrhosis

Jun 19, 2014

Researchers at Mayo Clinic released a new study reversing current thought on the treatment of cirrhotic patients with type 2 diabetes. The study found that the continuation of metformin after a cirrhosis diagnosis improved ...

Weight loss surgery alters fatty liver disease genes

Aug 06, 2013

Research has shown that weight loss surgery can benefit obese individuals in ways that go beyond shedding pounds, for example by causing early remission of type 2 diabetes. Now scientists have found that the surgery can also ...

Inflammation in fat tissue helps prevent metabolic disease

Jun 18, 2014

Chronic tissue inflammation is typically associated with obesity and metabolic disease, but new research from UT Southwestern Medical Center now finds that a level of "healthy" inflammation is necessary to prevent metabolic ...

Recommended for you

Connection found between birth size and brain disorders

19 hours ago

(Medical Xpress)—A trio of researchers has found what appears to be a clear connection between birth size and weight, and the two brain disorders, autism and schizophrenia. In their paper published in Proceedings of ...

A novel therapy for sepsis?

Sep 16, 2014

A University of Tokyo research group has discovered that pentatraxin 3 (PTX3), a protein that helps the innate immune system target invaders such as bacteria and viruses, can reduce mortality of mice suffering ...

User comments