Researchers investigating ways to improve type 2 diabetes treatments

A better understanding of how the transcription factor Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma) works is critical to find new ways to improve medications to treat type 2 diabetes. Drugs that activate PPARgamma, called thiazolidinediones (TZDs), have long been regarded as a treatment for type 2 diabetes based on their anti-inflammatory and potent insulin-sensitizing activity. When taken orally, TZDs help decrease insulin resistance. However, most medications in that class have now been withdrawn from the market, or severely limited in their usage, given their dangerous side effects, which include weight gain, water retention and heart failure.

One promising approach to target PPARgamma to treat the issues related to is to dissect the regulatory strategies that control different subsets of PPARgamma target genes in cells. The ultimate goal would be to target the "negative" side of PPARgamma activity without impacting on the "good" ones.

A recent study led by BUSM researchers, published in Cell Reports, identifies one such strategy regulating fat tissue activity and PPARgamma in adipose cells. It is based on a group of cellular factors that bind to DNA and help PPARgamma in the regulation of a specific subset of target genes, including enzymes important for the mobilization of lipids.

"There is a great need to develop new treatments for people with type 2 ," said Valentina Perissi, PhD, assistant professor of biochemistry at BUSM and the study's corresponding author. "Targeting PPARgamma still represents a powerful approach, however we need to further improve our understanding of PPARgamma function and how its activity is regulated in in orderdevelop more effective treatments."

More information: "GPS2/KDM4A Pioneering Activity Regulates Promoter-Specific Recruitment of PPARγ." M. Dafne Cardamone, Bogdan Tanasa, Michelle Chan, Carly T. Cederquist, Jaclyn Andricovich4, Michael G. Rosenfeld, Valentina Perissi. Cell Reports Published Online: June 19, 2014. DOI: dx.doi.org/10.1016/j.celrep.2014.05.041

add to favorites email to friend print save as pdf

Related Stories

Gene behind unhealthy adipose tissue identified

May 22, 2014

Researchers at Karolinska Institutet in Sweden have for the first time identified a gene driving the development of pernicious adipose tissue in humans. The findings imply, which are published in the scientific ...

Researchers identify key regulator of inflammatory response

Apr 12, 2012

(Medical Xpress) -- Researchers at Boston University School of Medicine (BUSM) have identified a gene that plays a key role in regulating inflammatory response and homeostasis. These findings could help lead to the development ...

Scientists find 'dual switch' regulates fat formation

Apr 08, 2011

New research by scientists at The Scripps Research Institute and collaborating institutions has identified a key regulator of fat cell development that may provide a target for obesity and diabetes drugs.

Recommended for you

Screening for diabetes at dental visits using oral blood

Feb 26, 2015

It is estimated that 8.1 million of the 29.1 million Americans living with diabetes are undiagnosed and many who have diabetes have poor glycemic control. Given that each year many Americans visit a dental provider but not ...

CBT, sertraline insufficient in diabetes and depression

Feb 26, 2015

(HealthDay)—For patients with diabetes and depression, improvements in depression are seen with cognitive behavioral therapy (CBT) or sertraline, with a significant advantage for sertraline, but glycemic ...

Early signs in young children predict type 1 diabetes

Feb 26, 2015

New research shows that it is possible to predict the development of type 1 diabetes. By measuring the presence of autoantibodies in the blood, it is possible to detect whether the immune system has begun to break down the ...

Daily menu plan reduces blood sugar significantly

Feb 25, 2015

A large group of people with diabetes who followed a menu plan created by University of Alberta nutrition researchers for just three months significantly reduced their blood sugar levels.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.