Researchers investigating ways to improve type 2 diabetes treatments

A better understanding of how the transcription factor Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma) works is critical to find new ways to improve medications to treat type 2 diabetes. Drugs that activate PPARgamma, called thiazolidinediones (TZDs), have long been regarded as a treatment for type 2 diabetes based on their anti-inflammatory and potent insulin-sensitizing activity. When taken orally, TZDs help decrease insulin resistance. However, most medications in that class have now been withdrawn from the market, or severely limited in their usage, given their dangerous side effects, which include weight gain, water retention and heart failure.

One promising approach to target PPARgamma to treat the issues related to is to dissect the regulatory strategies that control different subsets of PPARgamma target genes in cells. The ultimate goal would be to target the "negative" side of PPARgamma activity without impacting on the "good" ones.

A recent study led by BUSM researchers, published in Cell Reports, identifies one such strategy regulating fat tissue activity and PPARgamma in adipose cells. It is based on a group of cellular factors that bind to DNA and help PPARgamma in the regulation of a specific subset of target genes, including enzymes important for the mobilization of lipids.

"There is a great need to develop new treatments for people with type 2 ," said Valentina Perissi, PhD, assistant professor of biochemistry at BUSM and the study's corresponding author. "Targeting PPARgamma still represents a powerful approach, however we need to further improve our understanding of PPARgamma function and how its activity is regulated in in orderdevelop more effective treatments."

More information: "GPS2/KDM4A Pioneering Activity Regulates Promoter-Specific Recruitment of PPARγ." M. Dafne Cardamone, Bogdan Tanasa, Michelle Chan, Carly T. Cederquist, Jaclyn Andricovich4, Michael G. Rosenfeld, Valentina Perissi. Cell Reports Published Online: June 19, 2014. DOI: dx.doi.org/10.1016/j.celrep.2014.05.041

Related Stories

Gene behind unhealthy adipose tissue identified

date May 22, 2014

Researchers at Karolinska Institutet in Sweden have for the first time identified a gene driving the development of pernicious adipose tissue in humans. The findings imply, which are published in the scientific ...

Researchers identify key regulator of inflammatory response

date Apr 12, 2012

(Medical Xpress) -- Researchers at Boston University School of Medicine (BUSM) have identified a gene that plays a key role in regulating inflammatory response and homeostasis. These findings could help lead to the development ...

Scientists find 'dual switch' regulates fat formation

date Apr 08, 2011

New research by scientists at The Scripps Research Institute and collaborating institutions has identified a key regulator of fat cell development that may provide a target for obesity and diabetes drugs.

Recommended for you

Faster heart rate linked to diabetes risk

date May 22, 2015

An association between resting heart rate and diabetes suggests that heart rate measures could identify individuals with a higher future risk of diabetes, according to an international team of researchers.

EBV co-infection may boost malaria mortality in childhood

date May 21, 2015

Many people who live in sub-Saharan Africa develop a natural immunity to malaria, through repeated exposure to Plasmodium parasites. Even so, the disease kills close to half a million children per year, according ...

Three important things you didn't know about diabetes

date May 21, 2015

When we think of diabetes, we tend to think of rich people with poor lifestyles. A chronic disease linked with obesity, heart disease and worse outcomes for some infectious diseases, diabetes tends to be ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.