New infections cause dormant viruses to reactivate

July 31, 2014

The famous slogan is "A diamond is forever," but that phrase might be better suited to herpes: Unlike most viruses, which succumb to the immune system's attack, herpes remains in the body forever, lying in wait, sometimes reactivating years later.

Researchers have long wondered what causes herpes viruses—two strains of which are linked to cancer—to reactivate after remaining dormant once the initial infection resolves. Now a team of researchers, including two University of Florida scientists, has discovered that interactions with other infections later in life can trigger these dormant viruses to resurface and cause disease.

Understanding more about how specific pathogens interact with each other could help scientists devise new and better ways to combat these infections and the diseases they cause, the researchers write in a paper published in the journal Science (June 26).

"Probably 95 percent of us have been infected with at least one herpes virus, but many people never have a problem with it," said study co-author Rolf Renne, a professor of molecular genetics and microbiology in the UF College of Medicine and a member of the UF Genetics Institute and the UF Health Cancer Center. There are eight herpes viruses that infect humans, causing diseases that range from cold sores and chickenpox to mononucleosis and cancer. "The question has been: What happens to reactivate these viruses to cause disease?"

Led by researchers at the Washington University in St. Louis, the study found that parasite infections later in life can spark an immune reaction that clears the way for the herpes virus to reactivate. In this case, the scientists were studying a specific herpes virus linked to a form of cancer called Kaposi sarcoma, human herpes virus 8.

The researchers discovered that after initial infection by the virus, a protein called keeps herpes in check, which explains why the virus typically remains dormant in the body. But when the immune system later responded to an infection with a parasitic worm called a helminth, another protein called interleukin 4 was released, which not only blocked interferon gamma from doing its job but also directly activated virus replication. When the virus replicates, it infects new cells, increasing the chances a cancerous tumor will form, Renne said.

"The fact that the virus can 'sense' the to a worm and respond by reactivating is a remarkable example of co-evolution," said senior author Dr. Herbert W. Virgin IV, of Washington University in St. Louis. "We think other interactions between multiple infectious agents and the will be discovered over time that we will view as similarly sophisticated or maybe even devious. Understanding these interactions will help us survive in a complex microbial world."

The Washington University in St. Louis researchers made the discovery first by studying a mouse herpes virus. UF researchers were able to duplicate these findings in human cells infected with the Kaposi sarcoma-associated .

Infections with the helminth parasite occur frequently in developing countries, including sub-Saharan Africa, where cases of Kaposi sarcoma are also particularly common.

Explore further: Fighting parasitic infection inadvertently unleashes dormant virus

Related Stories

Clinical trial of herpes vaccine now enrolling patients

July 28, 2014

Creating a successful vaccine against two members of the family, the sexually transmitted herpes simplex virus 1 (HSV-1) and 2 (HSV-2), has proven to be challenging. A clinical trial being conducted by a branch of the National ...

Study reveals new approach for stopping herpes infections

March 25, 2013

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a novel strategy for preventing infections due to the highly common herpes simplex viruses, the microbes responsible for causing genital ...

How and why herpes viruses reactivate to cause disease

October 31, 2012

The mere mention of the word "herpes" usually conjures negative images and stereotypes, but most people have been infected with some form of the virus. For most, a sore appears, heals and is forgotten, although the virus ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.