New optogenetic tool for controlling neuronal signalling by blue light

July 7, 2014

Institute for Basic Science (IBS), the main organization of the International Science and Business Belt project in South Korea, has announced that a group of researchers, led by professor Won Do Heo, have developed a new technology in the field of optogenetics that can remotely control specific receptors by light. They have named this new technology "OptoTrk" and it has succeeded with neuronal differentiation inducement.

The most significant feature of OptoTrk technology is that it requires only light to activate neuronal functions without the need of other substances. The receptors are activated when exposed to blue light, and then induce both neuronal growth and differentiation by upregulating downstream cell signalling.

"We are now conducting neuroscience research on several mouse models using our OptoTrk technology," says professor Won Do Heo, who led the research. "This newly developed technology will play a ground-breaking role in investigating the functions of neurons in the brain, specifically those functions in the most complicated of neural networks, which existing technologies have limitations exploring."

Before the development of this , natural ligands or agonists were widely used as tools to specifically control receptor activity. However, they did not allow spatiotemporal control, and so required a time period to bind with the receptor. Therefore, there were limits to understanding the dynamic nature of intracellular signalling networks. To address these limitations, the researchers developed this new technology using optogenetics. Recently optogenetics is attracting attention from many, various fields in the biological sciences. This study applies light-sensitive proteins - found in microorganisms and plants - to human (and/or animal) cells and can manipulate several cell functions.

"We have found that optoTrk can be regulated by simply switching light on and off," says professor Won Do Heo. "We were able to control the functional duration of down-stream signalling by adjusting the frequency of blue-light illumination."

Professor Won Do Heo added that he plans to publish an additional paper related to source technology in another renowned journal by the end of June. This will bring the Professor's number of published research outcomes related to the study of to a total of 3 in the last two months. These publications include the paper regarding "Light-Activated Reversible Inhibition by Assembled Trap (LARIAT)". This paper on LARIAT was published in May in the prominent science journal, Nature Method, in the field of biochemistry.

Explore further: Switching off anxiety with light

Related Stories

Switching off anxiety with light

April 7, 2014

Receptors for the messenger molecule serotonin can be modified in such a way that they can be activated by light. Together with colleagues, neuroscientists from the Ruhr-Universität Bochum (RUB) report on this finding in ...

Enlightening cancer cells

July 1, 2014

Joint EMBO Journal paper by IST Austria and Vienna Medical University groups on engineered cell surface receptors activated by light. Small algal protein domains serve as synthetic light sensors in human cells. First application ...

Recommended for you

New mechanism discovered behind infant epilepsy

September 3, 2015

Scientists at Karolinska Institutet and Karolinska University Hospital in Sweden have discovered a new explanation for severe early infant epilepsy. Mutations in the gene encoding the protein KCC2 can cause the disease, hereby ...

Neuron responsible for alcoholism found

September 2, 2015

Scientists have pinpointed a population of neurons in the brain that influences whether one drink leads to two, which could ultimately lead to a cure for alcoholism and other addictions.

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.