New hope in fight against muscular dystrophy

August 22, 2014
Human heart muscle cells stained with antibodies sow dystrophin as unstained muscle.

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

An international team that includes KTH researchers Christina Al-Khalili Szigyarto and Mathias Uhlén report that they discovered how to create a variant of dystrophin that can mitigate . This could in turn lead to the development of new therapies for muscular dystrophy.

The research was published this month in Nature Medicine.

Duchenne muscular dystrophy results from a lack, or impaired function, of the protein dystrophin, a major component of muscles. Dystrophin plays a significant role in, among other things, cardiovascular functioning.

The causes a progressive degeneration process of the muscles, resulting in decreased mobility, breathing problems, heart failure and, ultimately, a premature death.

Uhlén, a professor of microbiology at KTH, says the research team demonstrated the presence of so-called native and truncated dystrophin with the help of HPA antibodies in muscle.

"Then the protein is run through a gel, extracted and sequenced by mass spectrometry," Uhlén says. "The resulting sequences of the native and the truncated dystrophin protein have been compared on the level of amino acid.

"We have been able to demonstrate that in comparison with healthy people, the patients in the study manufacture a shorter version of the despite a severe mutation in the dystrophin gene."

Explore further: Discovery one step closer to treatment for Duchenne muscular dystrophy

More information: Nicolas Wein, Adeline Vulin, Maria S Falzarano, Christina Al-Khalili Szigyarto, Baijayanta Maiti, Andrew Findlay, Kristin N Heller, Mathias Uhlén, Baskar Bakthavachalu, Messina, Giuseppe Vita, Chiara Passarelli, Francesca Gualandi, Steve Wilton, Louise R Rodino-Klapac, Lin Yang, Diane M Dunn, Daniel R Schoenberg, Robert B Weiss, Michael T Howard, Alessandra Ferlini & Kevin M Flanigan, "Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice," Nature Medicine (2014) DOI: 10.1038/nm.3628, Received 31 January 2014 Accepted 05 June 2014 Published online 10 August 2014

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.