New study highlights effectiveness of a herpesvirus CMV-based vaccine against Ebola

February 15, 2016
The Ebola virus, isolated in November 2014 from patient blood samples obtained in Mali. The virus was isolated on Vero cells in a BSL-4 suite at Rocky Mountain Laboratories. Credit: NIAID

As the latest in a series of studies, researchers at Plymouth University, National Institutes of Health and University of California, Riverside, have shown the ability of a vaccine vector based on a common herpesvirus called cytomegalovirus (CMV) expressing Ebola virus glycoprotein (GP), to provide protection against Ebola virus in the experimental rhesus macaque, non-human primate (NHP) model. Demonstration of protection in the NHP model is regarded as a critical step before translation of Ebola virus vaccines into humans and other great apes.

The study is published today, Monday 15th February, in the online journal from Nature publishing, Scientific Reports.

In addition to establishing the potential for CMV-based vaccines against Ebola , these results are exciting from the potential insight they give into the mechanism of protection. Herpesvirus-based vaccines can theoretically be made to produce their targeted protein (in this case, Ebola virus GP) at different times following vaccination. The current CMV vaccine was designed to make the Ebola virus GP at later times. This resulted in the surprising production of high levels of antibodies against Ebola virus with no detectable Ebola-specific T cells. This immunological shift towards antibodies has never been seen before for such primate herpesvirus-based vaccines, where responses are always associated with large T cell responses and poor to no antibodies.

"This finding was complete serendipity," says Dr Michael Jarvis who is leading the project at Plymouth University. "Although we will definitely need to explore this finding further, it suggests that we may be able to bias immunity towards either antibodies or T cells based on the time of target antigen production. This is exciting not just for Ebola, but for vaccination against other infectious as well as non-infectious diseases".

A largely untold story is the devastating effect Ebola virus is having on wild populations in Africa. Although the present study administered the vaccine by direct inoculation, a CMV-based that can spread from animal to animal may be one approach to protect such inaccessible wild animal populations that are not amenable to vaccination by conventional approaches. The current study is a step forward, not only for conventional Ebola virus vaccines for use in humans, but also in the development of such 'self-disseminating vaccines' to target Ebola in great apes, and other emerging infectious diseases in their wild animal host before they fully establish themselves in humans.

Explore further: Study announces a durable vaccine for Ebola

More information: Scientific Reports, DOI: 10.1038/srep21674

Related Stories

Study announces a durable vaccine for Ebola

March 25, 2015

A cytomegalovirus (CMV)-based vaccine provides long-lasting protective immunity against Ebola virus, and has potential for development as a disseminating vaccine strategy to prevent ebolavirus infection of wild African ape ...

Researchers test Ebola vaccine for wild apes

August 26, 2015

Amid promising reports of effective Ebola vaccines for humans, a vaccine that could potentially protect endangered wild apes from deadly infectious diseases, including the Ebola virus, is being tested at the New Iberia Research ...

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.