The Brain's Executive Is An 'Event Planner'

May 18, 2006

Studies in which monkeys were asked to manipulate computer cursors for fruit juice rewards have revealed that the brain's "executive" center plans behaviors not by specifying movements required for given actions, but rather the events that will result from those actions.

The distinction is significant, said the researchers, because it yields new basic insight into a central function of behavioral planning in this higher brain region, called the lateral prefrontal cortex (PFC).

The researchers, led by Hajime Mushiake of Tohoku University School of Medicine, reported their findings in the May 18, 2006, issue of Neuron. They concentrated on a brain region called the lateral prefrontal cortex (PFC), which many studies have shown to be involved in such higher brain functions as planning. However, noted the researchers, few studies have analyzed the specific nature of the behaviors that are planned.

"To achieve a behavioral goal in daily life, we often need to plan multiple steps of motor behavior that involve selection of a series of actions," wrote the researchers. "The question arises: how are individual neurons within the PFC involved in the planning of multistep behaviors? More specifically, does the activity of PFC neurons during the process of planning reflect the multiple movements required during future actions or the individual future events that occur as a result of the actions?"

To study the detailed activity of neurons in the lateral PFC during planning, the researchers fitted monkeys with recording electrodes that could measure activity in the region's neurons.

They then taught the monkeys to perform a complex task in which the animals were required to manipulate joysticks to move a cursor on a computer screen from a starting point to a goal. Importantly, the researchers required the monkeys to maneuver the cursor within a maze to reach the goal and to perform those maneuvers in a discrete stepwise fashion with pauses in between. This stepwise approach enabled the researchers to distinguish whether the lateral PFC neurons were active during planning the movements or planning the events that would result from those movements.

"We found that neurons in the lateral PFC exhibited substantial changes in activity during a preparatory period in which monkeys were required to plan multiple steps of motor behavior," concluded the researchers. "Neuronal activity during the preparatory period predominantly reflected intended (future) movements of a cursor along a particular path within a maze to reach an intended goal. All cursor movements that had to be prepared . . . to reach the goal were reflected by the activity of the PFC neurons. In contrast, very few PFC neurons (9%) reflected the intended arm movements during the preparatory period," they concluded.

"When we plan multiple steps of actions in daily life, we usually do so by consciously arranging future events that we expect to occur as the consequence of actions in a particular temporal order; we rarely consider the temporal sequence of motor actions themselves," wrote Mushiake and colleagues. "The properties of PFC neurons that we observed in the present study are compatible with behavioral planning based on future events.

"If we assume that planning for multiple movements in monkeys is analogous to that in humans, it follows that PFC neurons in the monkey brain process information for future events in a prospective manner to generate action plans based on a series of events during the course of reaching a behavioral goal," they wrote.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: Brain 'relay' also key to holding thoughts in mind

Related Stories

Brain 'relay' also key to holding thoughts in mind

May 3, 2017
Long assumed to be a mere "relay," an often-overlooked egg-like structure in the middle of the brain also turns out to play a pivotal role in tuning-up thinking circuity. A trio of studies in mice funded by the National Institutes ...

Bee brains challenge view that larger brains are superior at understanding conceptual relationships

October 21, 2013
(Phys.org) —The humble honeybee may not seem very intelligent at first sight, but recent research has shown that it possesses a surprising degree of sophistication that is not expected in an insect brain. Specifically, ...

Brain signatures of spontaneous thoughts

June 9, 2016
Without prompting, they fill our stream of consciousness–Sudden amusement at a joke you heard yesterday, or a flash of panic over an important meeting that slipped your mind. Spontaneous thoughts constitute the majority ...

Upfront and personal: Scientists model human reasoning in the brain's prefrontal cortex

June 27, 2014
(Medical Xpress)—Located at the forward end of the brain's frontal lobe, the mammalian prefrontal cortex (PFC) is the seat of many of our most unique cognitive abilities – collectively referred to as executive function ...

Recommended for you

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

How cytoplasmic DNA triggers inflammation in human cells

October 17, 2017
A team led by LMU's Veit Hornung has elucidated the mechanism by which human cells induce inflammation upon detection of cytoplasmic DNA. Notably, the signal network involved differs from that used in the same context in ...

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Signaling pathway may be key to why autism is more common in boys

October 17, 2017
Researchers aiming to understand why autism spectrum disorders (ASD) are more common in boys have discovered differences in a brain signaling pathway involved in reward learning and motivation that make male mice more vulnerable ...

Schizophrenia disrupts the brain's entire communication system, researchers say

October 17, 2017
Some 40 years since CT scans first revealed abnormalities in the brains of schizophrenia patients, international scientists say the disorder is a systemic disruption to the brain's entire communication system.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.