Microscopic scaffolding offers a 'simple' solution to treating skin injuries

June 28, 2006

A revolutionary dissolvable scaffold for growing new areas of skin could provide a safer, more effective way of treating burns, diabetic ulcers and similar injuries.

This ultra-fine, 3-dimensional scaffold, which is made from specially developed polymers, looks similar to tissue paper but has fibres 100 times finer. Before it is placed over a wound, the patient's skin cells (obtained via a biopsy) are introduced and attach themselves to the scaffold, multiplying until they eventually grow over it. When placed over the wound, the scaffold dissolves harmlessly over 6 to 8 weeks, leaving the patient's skin cells behind.

This new approach to skin reconstruction has been developed by a team of chemists, materials scientists and tissue engineers at the University of Sheffield, with funding from the Engineering and Physical Sciences Research Council. It is designed primarily for cases involving extensive burns where surgeons are unable to take enough skin grafts from elsewhere on the body to cover the damaged areas. Currently, bovine collagen or skin from human donors is used in these cases, but these approaches have potential health and rejection risks.

"Simplicity is the key," says Professor Tony Ryan, who is leading the team. "Previous attempts to find better ways of encouraging skin cell growth have used chemical additives and other elaborate techniques to produce scaffolds, but their success has been limited. We've found that skin cells are actually very 'smart' – it's in their DNA to sort themselves into the right arrangement. They just need a comparatively uncomplicated scaffold (and each other) to help them grow in a safe, natural way."

The polymers used in the scaffold are biodegradable materials already approved for medical applications. Because the team has recognised that skin cells are 'smart' and the scaffold can therefore be 'dumb' (i.e. not overly sophisticated), simple polymers can be used.

The process for making the scaffolds is based on the well-known technique of electrospinning. However, the team has made a key advance by developing a new method of making, from the same biodegradable polymers, aligned-fibre 'mats' of potential use in promoting nerve or tendon growth. This method is currently being patented.

The next step in the research is to develop the skin reconstruction technology for clinical use, hopefully in the next few years. The technology also offers possibilities for testing the toxicity of cosmetic and similar products, using materials grown in the laboratory that closely resemble natural skin.

"Ultimately, we can envisage treatment of burns victims and the undertaking of reconstructive surgery using the scaffold and the patient's own skin to produce bespoke skin for that patient," says Professor Ryan. "As an accident-prone mountain biker, I find that prospect very attractive!"

Source: Engineering and Physical Sciences Research Council

Explore further: Researchers engineer natural windpipe replacement alternative to synthetic scaffolding now being used

Related Stories

Researchers engineer natural windpipe replacement alternative to synthetic scaffolding now being used

February 14, 2018
Biomedical engineers at Case Western Reserve University are growing tracheas by coaxing cells to form three distinct tissue types after assembling them into a tube structure-without relying on scaffolding strategies currently ...

Potential new treatment identified for drug-resistant skin cancer

February 6, 2018
Stanford researchers have learned how basal cell carcinoma evades drug treatment without mutating. The researchers found possible drug targets that may allow for more personalized treatment of this common skin cancer.

Team in China grows ears and attaches them to human patients

February 2, 2018
A team of researchers in China has, for the first time, created new ears for human patients by growing cartilage and implanting it. In their paper published on the open access site EBioMedicine, the group outlines how the ...

Engineers grow functioning human muscle from skin cells

January 9, 2018
Biomedical engineers have grown the first functioning human skeletal muscle from induced pluripotent stem cells.

Engineers use new technique to 3-D print a 'living tattoo'

December 5, 2017
MIT engineers have devised a 3-D printing technique that uses a new kind of ink made from genetically programmed living cells.

Bioengineers imagine the future of vaccines and immunotherapy

December 14, 2017
In the not-too-distant future, nanoparticles delivered to a cancer patient's immune cells might teach the cells to destroy tumors. A flu vaccine might look and feel like applying a small, round Band-Aid to your skin.

Recommended for you

Newborn babies who suffered stroke regain language function in opposite side of brain

February 17, 2018
It's not rare that a baby experiences a stroke around the time it is born. Birth is hard on the brain, as is the change in blood circulation from the mother to the neonate. At least 1 in 4,000 babies are affected shortly ...

New approaches in neuroscience show it's not all in your head

February 16, 2018
Our own unique experiences shape how we view the world and respond to the events in our lives. But experience is highly subjective. What's distressing or joyful to one person may be very different to another.

Link between hallucinations and dopamine not such a mystery, finds study

February 16, 2018
Researchers at Columbia University Irving Medical Center (CUIMC) and New York State Psychiatric Institute (NYSPI) found that people with schizophrenia who experience auditory hallucinations tend to hear what they expect, ...

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.