Gene Gives a Boost to Tumor Suppression

August 18, 2006

Angiogenesis, or the growth of new blood vessels, is an important naturally occurring process in the body. As with normal tissues, tumors rely on angiogenesis to supply them with the oxygen and nutrients they need for growth.

This understanding has led researchers to explore antiangiogenic therapies for the suppression of tumor growth. Among the most potent known inhibitors of tumor angiogenesis are C-terminal fragments of collagen, one of the most abundant proteins in the body. However, it was unknown how production of antiangiogenic fragments from full-length collagen was controlled.

Now, researchers at the University of Massachusetts Medical School have demonstrated a connection between p53, a commonly known tumor suppressor, and the production of antiangiogenic collagen fragments.

Dubbed the “guardian of the genome,” p53 is the body’s primary tumor suppressing protein. Involved in regulating the response of cells to stress, p53 has the ability stop cells from dividing when they are damaged and, in some cases, to encourage such cells to destroy themselves via programmed cell death, or apoptosis. In the continuing efforts to understand how p53 influences cell death, scientists have found that the presence of p53 in tumors also influences angiogenesis.

In their paper, “p53-Mediated Inhibition of Angiogenesis through Upregulation of a Collagen Prolyl Hydroxylase,” published in the August 18 issue of Science, UMMS scientists, led by Howard Hughes Medical Institute Investigator Michael R. Green, MD, PhD, the Lambi and Sarah Adams Chair in Genetic Research and professor of molecular medicine and biochemistry & molecular pharmacology, sought to define the mechanisms by which p53 influences the regulation of angiogenesis. In doing so, Dr. Green and colleagues identified a gene—alpha II collagen prolyl hydroxylase [?(II)PH]—that is not only stimulated by p53 but is also necessary for the p53-mediated production of antiangiogenic collagen fragments. Remarkably, when ?IIPH was delivered to mice, tumor growth could be dramatically inhibited. These findings reveal both a genetic and biochemical linkage between the p53 tumor suppressor pathway and the production of antiangiogenic collagen fragments, as well as new strategies for combating cancer.

Source: University of Massachusetts Medical School, Worcester

Explore further: Enzyme could protect against type of colorectal cancer by suppressing tumors, study finds

Related Stories

Enzyme could protect against type of colorectal cancer by suppressing tumors, study finds

January 3, 2017
An enzyme that plays an active role in inflammation could be a natural way to suppress tumors and ulcers in the colon that are found in colitis associated cancer (CAC), a type of colorectal cancer that is driven by chronic ...

Recommended for you

Brainwaves show how exercising to music bends your mind

February 18, 2018
Headphones are a standard sight in gyms and we've long known research shows listening to tunes can be a game-changer for your run or workout.

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.