Scientists Find Key to Copper Absorption, Essential to Life

September 5, 2006

Humans, animals and plants require copper to live, and scientists have now discovered how cells absorb this mineral that fuels the brain, heart and other vital organs.

Knowing how copper enters cells could prove essential to treating copper deficiencies in humans, said the scientists from Duke University Medical Center who made the discovery. People derive copper exclusively from their diet. The mineral is found abundantly in shellfish, legumes, red wine, nuts, seeds and chocolate, among other sources.

Although too much copper is toxic, copper deficiencies in adults can trigger brain deficits, heart enlargement, visual impairment, anemia (low iron), skin and hair breakdown and other organ damage.

Babies born without the ability to absorb and transport copper -- a disorder called Menkes disease -- die in childhood. But injecting the mineral into children with Menkes has not proven beneficial, because cells may lack the ability to utilize it properly, according to the Duke researchers.

Giving copper supplements to adults has proven more effective in alleviating their symptoms, but scientists have been unclear as to what controls copper absorption in the first place.

The Duke team studied copper absorption in mice and identified, for the first time, the cellular gateway through which copper passes. An identical gateway is present in humans, as well as in other animals and plants, the researchers said. The gateway is a copper "transporter," a specific pore on the surface of intestinal cells that funnels copper inside the intestinal walls. From there, copper is absorbed by the bloodstream and distributed throughout the body to serve as an engine to jump-start the activity of dozens of proteins that carry out essential functions.

The researchers published their findings in the Sept., 2006 issue of the journal Cell Metabolism, now available on line. The study was funded by the National Institutes of Health and the International Copper Association, Ltd.

"Identifying this transporter could enable the medical community to develop more effective ways of delivering copper to deficient children and adults, said study leader Dennis J. Thiele, Ph.D., professor of pharmacology and cancer biology. "Without copper, many biochemical processes either do not happen or happen at a reduced level, which results in a wide range of health impairments."

Among its roles, Thiele said, cells use copper to help destroy molecules called free radicals that contribute to aging and cancer; blood requires copper to clot properly; skin requires copper to form collagen and melanin; cells cannot absorb iron without copper; and embryos cannot grow and develop without copper. Copper imbalances have even been implicated in Alzheimer's disease, although the evidence is preliminary, according to Thiele.

In searching for the mechanism for copper absorption in cells, the researchers focused on a protein called Ctr1, a binding site or "receptor" that sits on the surface of cells in the intestine. Thiele's group, which is also affiliated with the Sarah W. Stedman Nutrition and Metabolism Center at Duke, had previously implicated Ctr1 as important in copper metabolism.

To further investigate its role, the researchers genetically manipulated pregnant mice so their developing fetuses lacked the gene that controls production of Ctr1 in the intestines. When the offspring were born, they could not absorb copper and dispatch it via the bloodstream throughout the body, the scientists found.

As a result, the pups weighed half the size of their normal counterparts, had striking defects in the enzymes that generate energy, had pale skin color, and deformed whiskers that were kinky and brittle. Within three weeks the pups had died, said Thiele.

The researchers took a second set of copper-deficient offspring and injected them with copper, within five days of birth, to determine if copper could rescue them from death. The mice are still alive after seven months -- normal mice live for two years -- and they are displaying fewer health problems associated with copper deficiency.

The researchers speculate that delivering copper shortly after birth, during critical windows of development, could stave off potential health problems due to copper deficiency. The infusion of copper would enable essential biochemical reactions to occur as organ systems are developing and forming. Once organ systems are fully developed, they are less susceptible to low levels of copper, the researchers speculate.

"Before birth and the weeks and months thereafter are crucial times when the body requires copper to build muscles, organs, brain connections and many other physiologic functions," Thiele said.

While rare in children, copper deficiencies are likely to be more common among adults than generally realized, Thiele said. People in the general population may have variations of the gene for Ctr1, called polymorphisms, which can reduce their ability to absorb and use copper without blocking it completely.

The current study will serve as a model for understanding what causes genetic errors in copper absorption and metabolism, Thiele said. His team will continue to study how the Ctr1 transporter functions and what errors in gene coding might contribute to health problems such as abnormal heart and brain function.

Thiele said that studying Ctr1 will help clarify how this copper transporter evolved in living organisms. Ctr1 has been preserved in its structure and function throughout all organisms, from yeast cells to human cells. This means the transporter evolved very early on, before organisms began to diverge in their genetic diversity, emphasizing the importance of this copper delivery mechanism.

Other researchers who participated in the study were Yasuhiro Nose and Byung-Eun Kim.

Source: Duke University Medical Center

Explore further: Engineers examine chemo-mechanics of heart defect

Related Stories

Engineers examine chemo-mechanics of heart defect

June 28, 2017
Elastin and collagen serve as the body's building blocks. They provide tensile strength and elasticity for a number of organs, muscles and tissues. Any genetic mutation short-circuiting their function can have a devastating, ...

Breakthrough tool predicts properties of theoretical materials

July 11, 2017
Scientists at the University of North Carolina at Chapel Hill and Duke University have created the first general-purpose method for using machine learning to predict the properties of new metals, ceramics and other crystalline ...

Some cling to landlines, but cell-only homes now dominate

May 4, 2017
Deborah Braswell, a university administrator in Alabama, is a member of a dwindling group—people with a landline phone at home.

Study provides understanding of how nerve cells are damaged by accumulation of abnormal proteins

May 25, 2017
A new study has uncovered a molecular mechanism in the prion protein, a protein responsible for neurodegenerative diseases, which may explain why nerve cells degenerate in these disorders.

Discovery may offer hope to Parkinson's disease patients

May 22, 2017
The finding of a common protein abnormality in these degenerative diseases supports a hypothesis among experts that abnormal deposition of proteins in many neurodegenerative disorders reflects an early change in these proteins.

Chemists create the ultimate natural sunscreen

May 17, 2017
Chemists, materials scientists and nanoengineers at UC San Diego have created what may be the ultimate natural sunscreen.

Recommended for you

Why sugary drinks and protein-rich meals don't go well together

July 20, 2017
Having a sugar-sweetened drink with a high-protein meal may negatively affect energy balance, alter food preferences and cause the body to store more fat, according to a study published in the open access journal BMC Nutrition.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.