Fertile? Not Without the Brain

October 20, 2006

There are many causes of infertility. The fact that nerve cells can also play a role is little known. The hormone estrogen regulates the activity of neurons that give the starting signal for ovulation. Collaborating with international research groups, scientists at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have studied this signaling pathway in detail and have discovered new causes of infertility.

The time of a woman’s monthly ovulation depends on how far the egg is matured and on the brain being informed about this. Estrogen, a hormone produced in the ovaries, transmits this message to the brain around the 14th day of the fertility cycle. In response, the stimulated neurons trigger increased release of another hormone called gonadotropin from the pituitary gland and, thus, give the signal for ovulation.

“The better we understand how estrogens work and what may go wrong in the interaction with neurons, the more possibilities we will have to counteract infertility,” says Professor Günther Schütz, head of the Division of Molecular Biology of the Cell I at the German Cancer Research Center. Schütz and his co-workers, collaborating with Professor Allan Herbison in New Zealand and two research groups in the U.S., demonstrated that only a specific group of neurons in the brain receive the hormone signal. These cells need to have the estrogen receptor alpha in order to recognize the message and subsequently trigger production of the necessary sex hormones.

Estrogen receptors are specialized on perceiving the estrogen hormone. Two types of estrogen receptors, alpha and beta, are found in the nervous system. It has been known that female animals suffer from lesions in the ovaries, mammary glands and uterus when they lack the estrogen receptor alpha. “Every single one of these defects is sufficient to make the animals infertile,” says biochemist Dr. Tim Wintermantel. Moreover, there were indications suggesting that estrogen receptor beta is also relevant for fertility. The scientists performed several experiments to find out more about the role played by the two estrogen receptors in the activation of neurons in the brain.

They studied mice who lacked the estrogen receptor alpha only in nerve cells. Additional estrogen given to these animals failed to trigger the hormone signal for ovulation. Furthermore, the investigators administered synthetic molecules developed and provided by Schering AG, Berlin, to healthy female mice. These substances activated exclusively the estrogen receptor alpha. This alone was sufficient to increase hormone production substantially. “Both experiments led to corresponding results,” explains Tim Wintermantel. “The estrogen receptor alpha needs to be not only present but also activated.”

Nevertheless, a gap in the researchers’ model became apparent: The neurons that are critical for the release of the messenger substance gonadotropin do not have the estrogen receptor alpha. How do the gonadotropin producers receive the signal to increase hormone release if they are unable to receive the estrogen message? The researchers discovered that a second group of neurons in the hypothalamus transmits the message. They demonstrated that these mediators are equipped with the alpha antenna and that they use long cellular extensions to connect with the cells that induce gonadotropin production in the pituitary gland.

Günther Schütz is convinced that this regulatory cycle is not the only one that estrogen uses to control the activity of neurons. “This could be important, for example, for patients who lack a specific receptor on the gonadotropin producing cells and who are infertile because of this,” he says. Therefore, the medical researcher plans to investigate further signaling pathways of estrogen in the brain with his co-workers in future.

Source: German Cancer Research Center

Explore further: Estrogen discovery could shed new light on fertility problems

Related Stories

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Researchers identify gene partly responsible for maternal care in mice

September 18, 2012
(Medical Xpress)—The medial preoptic area of the brain has been found over the years to be very closely involved with certain behaviors in mice, such as sexual proclivity, locomotion, aggression and the motivation to care ...

Estrogen: Not just produced by the ovaries

December 4, 2013
A University of Wisconsin-Madison research team reports today that the brain can produce and release estrogen—a discovery that may lead to a better understanding of hormonal changes observed from before birth throughout ...

Why do females respond better to stress? New study suggests it's because of estrogen in the brain

July 18, 2013
The idea that females are more resilient than males in responding to stress is a popular view, and now University at Buffalo researchers have found a scientific explanation. The paper describing their embargoed study will ...

Females respond better to stress because of estrogen, animal study finds

July 9, 2013
The idea that females are more resilient than males in responding to stress is a popular view, and now University at Buffalo researchers have found a scientific explanation. The paper describing their embargoed study will ...

What causes hot flushes during menopause? Research could lead to improved therapy

December 11, 2012
(Medical Xpress)—Hot flushes are not "in the head," but new research suggests they may start there. A UA research team has identified a region in the brain that may trigger the uncomfortable surges of heat most women experience ...

Recommended for you

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.