Neuroscientists pinpoint brain site for rapid learning

October 23, 2006

MIT researchers have provided the first two-pronged evidence--based on both behavior and physiology--that a specific juncture in the memory center of the brain is crucial for rapid learning.

The work, presented Oct. 18 at a meeting of the Society for Neuroscience in Atlanta, helps explain how injury or Alzheimer's disease result in loss of the ability to form new memories of facts and events.

The researchers, led by Thomas J. McHugh, research scientist at the Picower Institute for Learning and Memory, engineered a mouse lacking a receptor for a key neurotransmitter in the dentate gyrus. This serrated strip of gray matter is wrapped around and within the seahorse-shaped hippocampus, which is crucial in memory formation. Information arriving at the hippocampus first travels through the dentate gyrus.

"While it has long been known that damage to this region of the hippocampus affects short-term memory formation, little is understood about how each type of neuron-to-neuron connection contributes to memory in this circuit," McHugh said.

The researchers observed the behavior of the genetically manipulated mice and measured their neuronal activity. They found that neurons at a key juncture in the dentate gyrus that receives new input from other parts of the brain help mice recognize and remember new environments.

The mice without neurotransmitter receptors at this juncture "learned normally when trained slowly with hours or days between trials, but showed learning deficits when challenged to learn the same tasks quickly, with only minutes between trials," McHugh said. The finding shows that synapses--the connections among neurons--at the dentate gyrus are critical for rapid learning.

"This advance in the understanding of how the hippocampal circuit functions suggests possible therapeutic targets in diseases that lead to memory deficits," McHugh said.

McHugh's MIT colleagues on the work are Matthew Wilson, Picower Scholar and professor of neuroscience; Susumu Tonegawa, Picower Professor of Biology and Neuroscience and director of the Picower Institute; and Matthew W. Jones, a former Picower postdoctoral associate now at the University of Bristol.

Source: MIT

Explore further: Neuroscientists reverse memories' emotional associations

Related Stories

Neuroscientists reverse memories' emotional associations

August 27, 2014
Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings.

Memory formation triggered by stem cell development

February 23, 2012
Researchers at the RIKEN-MIT Center for Neural Circuit Genetics have discovered an answer to the long-standing mystery of how brain cells can both remember new memories while also maintaining older ones.

Recalling happier memories can reverse depression (Update)

June 17, 2015
MIT neuroscientists have shown that they can cure the symptoms of depression in mice by artificially reactivating happy memories that were formed before the onset of depression.

Researchers show that memories reside in specific brain cells

March 23, 2012
Our fond or fearful memories — that first kiss or a bump in the night — leave memory traces that we may conjure up in the remembrance of things past, complete with time, place and all the sensations of the experience. ...

How the brain encodes time and place

September 23, 2015
When you remember a particular experience, that memory has three critical elements—what, when, and where. MIT neuroscientists have now identified a brain circuit that processes the "when" and "where" components of memory.

Is there a central brain area for hearing melodies and speech cues? Still an open question

November 29, 2011
Previous studies have suggested a particular hotspot in the brain might be responsible for perceiving pitch, but auditory neuroscientists are still debating whether this "pitch center" actually exists. A review article discusses ...

Recommended for you

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

First study of radiation exposure in human gut Organ Chip device offers hope for better radioprotective drugs

February 14, 2018
Chernobyl. Three Mile Island. Fukushima. Accidents at nuclear power plants can potentially cause massive destruction and expose workers and civilians to dangerous levels of radiation that lead to cancerous genetic mutations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.