Scientists find guardian gene's choices crucial to stopping cancer process

January 8, 2007

Scientists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have uncovered a novel pathway by which the anti-cancer gene p53 springs into action, protecting a damaged cell from becoming cancer. The gene can either halt the cell's growth or send it spiraling toward certain death. How this choice is made, the researchers say, could have implications for future strategies in chemotherapy drug development.

According to Steven McMahon, Ph.D., associate professor of cancer biology at Jefferson Medical College, who led the work, the p53 gene's – or rather its protein's – ability to direct a damaged cell to either stop growing or commit suicide depends on turning on separate groups of target genes. He and his co-workers have found that after a cell's DNA is damaged, the p53 protein's ability to bind to the DNA can be affected.

Two enzymes, hMOF and TIP60, can chemically alter an amino acid, lysine 120, at the binding site, in turn influencing p53's decision on which target genes to turn on. The alteration can short-circuit p53's ability to cause the damaged cell to commit suicide, though it can still stop cell growth, suggesting that this change may help explain a mechanism behind p53's choice. They report their findings in the journal Molecular Cell.

"It's been known that p53 can induce cell cycle arrest or apoptosis (programmed cell death) as a way of eliminating developing cancer cells in response to cell damage, but no one has known how the choice is made," says Dr. McMahon. "This work narrows how the decision is made."

The findings could have implications for future drug development strategies. "Most chemotherapy strategies are aimed at getting cancer cells to die," Dr. McMahon says. "Figuring out what pathways p53 uses to cause that versus cell cycle arrest is important. It looks like this new modification that we have identified helps p53 make that decision."

"p53 is such an important player in the cancerous process – it's nearly always mutated or inactivated in cancer – that continuing to understand more about how it works will likely have significant implications for cancer research," says Dr. McMahon. "We wouldlike to understand the interplay between this newly identified pathway and others involved in p53 and cancer.

"Since p53 can make this decision, this might give some insight into which function of p53 is more important in which tissues," says co-author Stephen Sykes, a Ph.D. candidate at the University of Pennsylvania. "For example, K120 (lysine 120) mutations cause tumors in the prostate, but are not so much involved in causing immune system cancers such as lymphomas. That could suggest that p53's potential to cause cell death could be more important in certain tissues than in others. In the future, if someone could develop therapies that could specifically activate p53's potential to drive programmed cell death versus the cell cycle arrest potential, it might influence how a doctor might choose to treat a certain type of cancer.

"This may potentially enable the development of a cancer drug that would stimulate the enzymes to promote this modification driving p53 to apoptosis."

Source: Thomas Jefferson University

Explore further: Team finds a potentially better way to treat liver cancer

Related Stories

Team finds a potentially better way to treat liver cancer

October 12, 2017
A Keck School of Medicine of USC research team has identified how cancer stem cells survive. This finding may one day lead to new therapies for liver cancer, one of the few cancers in the United States with an incidence rate ...

By decoding how HPV causes cancer, researchers find a new potential treatment strategy

October 2, 2017
A study that teases apart the biological mechanisms by which human papillomaviruses (HPV) cause cancer has found what researchers at Georgetown University Medical Center say is a new strategy that might provide targeted treatment ...

P53 'master switch' remains top target in gene signaling network controlling cancer

October 10, 2017
There are two important categories of genes involved in cancer development, oncogenes and tumor suppressor genes. When oncogenes gain function, e.g. through mutation, they actively promote cancer - drugs that turn them off ...

Combination treatment targeting glucose in advanced brain cancer shows promising results in preclinical study

October 10, 2017
UCLA scientists have discovered a potential combination treatment for glioblastoma, the deadliest form of brain cancer in adults. The three-year study led by David Nathanson, a member of UCLA's Jonsson Comprehensive Cancer ...

Study uncovers mutation that supercharges tumor-suppressor

October 9, 2017
Cancer researchers have long hailed p53, a tumor-suppressor protein, for its ability to keep unruly cells from forming tumors. But for such a highly studied protein, p53 has hidden its tactics well.

Trial to test new drug in patients with advanced cancer

August 23, 2017
A clinical trial to test a new cancer drug in patients with advanced solid tumours, launches in four centres across the UK, through Cancer Research UK's Centre for Drug Development.

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.