Genetic hearing loss may be reversible without gene therapy

February 23, 2007

A large proportion of genetically caused deafness in humans may be reversible by compensating for a missing protein, based on discoveries in mice.

Emory University researchers have found that in mice, increasing the amount of the protein connexin26 in the ear's cochlea compensates for an absence of another protein, connexin30. The findings come 10 years after scientists first discovered that connexin26 mutations cause much of the deafness diagnosed at birth.

Xi (Erick) Lin, PhD, associate professor of otolaryngology and cell biology at Emory University School of Medicine, was lead author of the study, published recently in the Proceedings of the National Academy of Sciences.

"There are millions of deaf people affected by mutations in this one gene, connexin26," he says. "Congenital hearing loss is one of the most common human genetic birth defects, and that is why in almost all the states universal newborn hearing screening is mandated by law [including Georgia]."

In people without congenital hearing loss, connexin26 and connexin30 work together to form the cochlea's hybrid junction gaps, which facilitate intercellular communication. But when one of the proteins is missing, the hybrid junction gaps fail to work, and the cochlea's hair cells die off, leaving the body incapable of translating sounds into nerve impulses.

Even though scientists knew connexin26 was implicated in congenital deafness, they did not know precisely why. Working with Emory colleagues and scientists from the University of Bonn in Germany, Dr. Lin developed contrasting hypotheses.

"The deafness could have two very different explanations," he says. "Either hybrid gap junctions have special biophysical properties that cannot be replaced by gap junctions built with only one type of connexin, or mutations in one of the two connexins just cut the supply for making the gap junctions in half."

By adding extra connexin26 to mice that were missing connexin30, Dr. Lin and his team proved the latter hypothesis. With the additional connexin26, hearing sensitivity was restored and the expected hair cell death never occurred. Those positive findings led Dr. Lin to conclude, "The problem is simply caused by not having enough protein remaining in the ear of these mutant mice to assemble gap junctions."

Dr. Lin and his colleagues are now working to see if connexin-related deafness can be reversed in a mouse model, or if increasing connexin30 may help when connexin26 is absent.

As the research picks up momentum, these results--and future findings--may mean big changes for how congenital deafness is approached. Up to now, says Dr. Lin, scientists working on hearing loss had placed all their bets on gene therapy. That may no longer make sense. "Gene therapy, which has very few successful cases so far, may not be necessary," explains Dr. Lin.

Instead, Dr. Lin's findings indicate that a drug to boost connexin26 may be all that is needed. "Our work predicts that a drug should be sufficient to cure connexin30 deletion-caused deafness," he says.

Link: www.pnas.org/cgi/content/full/104/4/1337>

Source: Emory University

Related Stories

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.