Problem forgetting may be a natural mechanism gone awry

February 19, 2007

Better tie that string around your finger a little tighter. It may turn out the reason some people grow increasingly forgetful as they age is less about how old they are and more about subtle changes in the way the brain files memories and makes room for new ones - differences perhaps better blamed on patterns of cell-to-cell communication than the number of birthday candles decorating the cake.

A researcher with the McKnight Brain Institute of the University of Florida has found that rats become forgetful because a routine part of the memory process falls out of kilter, no matter their ages.

This change seems to be related to the chemicals necessary for brain cells to communicate with each other. The findings, published this month in the online edition of Neurobiology of Learning and Memory, expand the possibility that drugs or therapies could be developed to tune up the brain’s memory mechanisms.

“Aging is associated with an increased rate of forgetting,” said Thomas Foster, Ph.D., the Evelyn F. McKnight chair for brain research in memory loss at the College of Medicine. “My work indicates that the problem may be a slight shift in a normal forgetting mechanism.”

Scientists believe a memory forms when communication increases between brain cells called neurons. During memory formation, signals jump across narrow gaps between cells called synapses, and this output becomes increasingly larger.

But for this activity to efficiently create a memory, it helps if signaling decreases among less-involved neurons. It’s like quieting other people in the room so you can have a phone conversation. Scientists call the process of decreasing the signal at less-involved synapses “long-term depression,” or LTD.

“This is a normal process that helps with the sculpting of memory,” Foster said. “After all, we do not remember everything in perfect detail and we would not want to. This same mechanism probably is used to clear the brain circuits and make them ready to be used the next day. However, this mechanism in excess may lead to rapid forgetting as seen during brain aging.”

Foster’s lab group used aged and young rats to examine the relationships between LTD, aging and memory. The animals were trained to find a hidden platform to climb out of a pool of water - something they learned quickly with repetition.

When the researchers examined the animals’ neurons and used a slow, weak electrical signal to make the synapses less sensitive - an effort to squelch or depress the cellular communication - he found that the samples from younger animals and older animals that had the highest memory scores throughout their lives were more resistant to the interference. However, aged animals with impaired memories displayed what was termed as “robust long-term depression.”

Going back to the phone call example, not only did the rest of the room get quieter, the callers did, too. The assumption is if a memory is encoded by making synapses stronger, then memory can be disrupted by something that weakens those connections.

“When we see someone we know or perhaps even ourselves becoming more forgetful, we now know that this is not an inevitable process,” Foster said. “Further, as we begin to understand the mechanisms of memory, it becomes possible to predict promising targets for therapeutic strategies aimed at postponing or alleviating age-related memory impairment.”

Foster said it will be important to understand whether a change in cellular signaling is necessary to enable new memories to be formed by discarding old ones.

“The basic gist is that information storage requires a balance between mechanisms that make synapses stronger and weaker,” said Mark F. Bear, Ph.D., director of the Picower Institute for Learning and Memory at the Massachusetts Institute of Technology, who was not involved with the research. “In aging and disease, if that balance is disrupted to favor LTD, the unchecked synaptic weakening leads to memory loss. The good news is we are developing a good understanding of these mechanisms, and that will help us find ways to protect memory.”

Source: University of Florida

Explore further: Potential new autism drug shows promise in mice

Related Stories

Potential new autism drug shows promise in mice

November 14, 2017
Scientists have performed a successful test of a possible new drug in a mouse model of an autism disorder. The candidate drug, called NitroSynapsin, largely corrected electrical, behavioral and brain abnormalities in the ...

Research lays groundwork for promising Alzheimer's-fighting drink

October 31, 2017
Much of Professor Emeritus Richard Wurtman's career in MIT's Department of Brain and Cognitive Sciences revolved around developing new treatments for diseases and conditions by modifying chemicals produced in the brain.

Neuroscientists build case for new theory of memory formation

October 23, 2017
Learning and memory are generally thought to be composed of three major steps: encoding events into the brain network, storing the encoded information, and later retrieving it for recall.

Electron microscopy uncovers unexpected connections in fruit fly brain

November 3, 2017
What was once thought to be a done-and-dusted map of the fruit fly brain has gotten a second look, and researchers have discovered that it's actually not done at all.

Study shows brain structures make some people resilient to Alzheimer's disease

October 25, 2017
The size, shape and number of dendritic spines in the brain may play a major role in whether someone gets Alzheimer's disease, according to new research from the University of Alabama at Birmingham. Dendritic spines are sub-units ...

Here's what we think Alzheimer's does to the brain

November 6, 2017
Around 50m people worldwide are thought to have Alzheimer's disease. And with rapidly ageing populations in many countries, the number of sufferers is steadily rising.

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.