Study questions 'cancer stem cell' hypothesis in breast cancer

March 12, 2007

A Dana-Farber Cancer Institute study challenges the hypothesis that "cancer stem cells" – a small number of self-renewing cells within a tumor – are responsible for breast cancer progression and recurrence, and that wiping out these cells alone could cure the disease.

Instead, the scientists report in the March issue of Cancer Cell that they have identified two genetically distinct populations of cancer cells in samples of human breast tumors – one of the types being a cell recently proposed by other scientists to be a true breast cancer stem cell.

"If the breast cancer cells were all coming from a single cancer stem cell, you might be able to cure the disease with just one drug," said Kornelia Polyak, MD, PhD, of Dana-Farber, senior author of the paper. "But our findings suggest that the tumor cells come from a ‘stem-like’ progenitor cell, and then diverge genetically, so I think you have to treat both cell types."

The results suggest that both cell types, and probably others, are involved in the development of breast cancer. While analyzing the genetics of each cell type, the
researchers discovered that the proposed "cancer stem cells" were driven by an activated molecular pathway that makes them resemble normal stem cells. Women whose breast tumors are largely made up of these "stem-like" cells are at higher risk of recurrences.

On the positive side, the abnormal activated pathway in these cells, known as the TGF-Beta1 signaling pathway, can be blocked by experimental drugs now entering clinical trials, said Polyak, who is also an associated professor at Harvard Medical School. Such inhibitors, in combination with other therapies, may improve the prognosis in breast cancers fueled by these cells.

Clonal evolution or cancer stem cells?

According to a longstanding cancer model, known as "clonal evolution," tumors arise from normal cells that mutate and generate abnormal offspring that also mutate, forming a mass of genetically varied cancer cells. However, there has been a new wave of interest in an alternative explanation – that tumors are initiated and driven by a single, abnormal type of adult stem cell found in, for example, breast tissue, resulting in a population of genetically identical tumor cells. Moreover, several pathways and genes required for normal stem cell function are activated in cancer cells and play essential roles in the development of tumors.

According to the cancer stem cell hypothesis, the few self-renewing stem cells that fuel the cancer are difficult to kill, and their persistence may explain why tumors so often recur following successful therapy.

In 2003, scientists purified what they proposed were breast cancer stem cells from patients’ tumors. The distinctive molecule, or marker, on the cells’ surface, known as CD44+, was identical to the marker on normal breast cells. When injected into mice lacking an immune system, the CD44+ cells demonstrated the ability to initiate breast tumors. The scientists also found closely related cells with a CD24+ marker and suggested that they were offspring of CD44+ cells.

The team led by Polyak and Michail Shipitsin, also of Dana-Farber and HMS, used gene activity analysis to clarify the relationship of the two cell types. They generated gene libraries from CD24+ and CD44+ cells purified from normal mammary epithelium and fluids within the chest, and from primary invasive tumor samples collected from breast cancer patients.

The findings, the scientists reported, fit more closely with the clonal model than the cancer stem cell hypothesis. That is, the CD24+ cells were very similar to the CD44+ cells, but not always genetically identical – which they would have been if the CD44+ cells were true stem cells and the CD24+ their offspring.

"Although CD44+ cells appear to express many stem cell markers, the genetic difference between CD24+ and CD44+ cells within a tumor questions the validity of the cancer stem cell hypothesis in breast cancer, and suggests clonal evolution involving intra-tumoral heterogeneity as an alternative explanation," the authors wrote.

Moreover, the Polyak team found that the CD44+ cells, but not the CD24+ cells were driven by the activated TFG-Beta1 pathway. For that reason, they said, "tumors composed of mostly CD44+ cells may have worse clinical behavior than tumors mainly composed of CD24+ cells, and these patients may benefit from therapy targeting the TFG-Beta1 pathway."

Source: Dana-Farber Cancer Institute

Explore further: New breast cell types discovered by multidisciplinary research team

Related Stories

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

How pomegranate extract alters breast cancer stem cell properties

November 15, 2017
A University at Albany research team has found evidence suggesting that the same antioxidant that gives pomegranate fruit their vibrant red color can alter the characteristics of breast cancer stem cells, showing the superfood's ...

Study reveals why testicular cancer is so responsive to chemo

November 14, 2017
Cornell researchers have taken a major step toward answering a key question in cancer research: Why is testicular cancer so responsive to chemotherapy, even after it metastasizes?

Computer program finds new uses for old drugs

November 16, 2017
Researchers at the Case Comprehensive Cancer Center at Case Western Reserve University School of Medicine have developed a computer program to find new indications for old drugs. The computer program, called DrugPredict, ...

How a poorly explored immune cell may impact cancer immunity and immunotherapy

November 17, 2017
The immune cells that are trained to fight off the body's invaders can become defective. It's what allows cancer to develop. So most research has targeted these co-called effector T-cells.

Recommended for you

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.